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Abstract

This paper describes a new numerical scheme

dynamical flows with shocks. It is similar to a

for calculating hyilro-

scheme promulgated

some years ago by von Neummn, see

by him and R. Richtmyer, see [11],

numerical scheme which ignores the

more closely related to the scheme

[199 and modified more recently

inasmuch as it is a straightforward

presence of discontinuities. It is

described in [9] since no viscosity

term is used; what is new about the method is:

(a) The difference scheme used is based on the conservation

form of the hydrodynamic equations.

(b) The difference scheme is unsymmetric in time,

Description of the difference equations: Write the hydrodynu”.c

equations in the form of conservation laws (mass, momentum and energy);

in this form each term in the equation is a perfect x or t derivative.

Replace all x derivatives by centered difference quotients, all time

derivatives f’tby a forward facing difference quotient of this sort:

n+l ‘n
‘1 -5!

>
At

T
where fa is taken as the arithmetic mean of the values of f at all

neighboring space points at time cycle n.

This scheme uses a staggered lattice,i.e.,at time cycle n we use

all latticevectors ~ with, say, even components, at the next time

cycle we use odd lattice vectors.

2 !JNCIAJSIFIEb
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The conjecture is that if the meshsize tends to zero, and the

stability condition of Courant-Friedrichs-Lewyis satisfied, the ap-

proximate solutions computed by this method will tend to the exact

solution uniformly except in neighborhoods of discontinuity lines or

surfaces.

The mathematical soundness of this proposition is discussed in de-

tail, using as an example the equation Ut + Uux = O. Test calculations

performed on this equation and on the hydrodynamic equations in one

dimension, both Euler and Lagrange form, show fairly conclusively that

the method works. Some of the numerical results are presented at tbe

end of the report.
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ON DISCONTINUOUS INITIAL VALUE PROBLEMS FOR NONLINEAR EQUATIONS AND

FINITE DIFFERENCE SCHEMES

Let Ut + AUX + B = O be a quasilinear hyperbolic system of first

order equations; U denotes a column vector of n unknown functions, A

a coefficient matrix, and B a vector. A smd B are assumed to be

functions of x,t and U. The system is cslled hyperbolic if all eigen-

values of A are real and if A has n linearly independent eigenvectors.

The initial value problem for such a system is to find a solution——

with prescribed values on the x axis (or an interval of it),

U(X,O) = 1 (x). According to the theory of hyperbolic equations

this initial.value problem has a (unique) solution if ~(x) is differ-

entiable, or is at least Lipschitz continuous (in this latter case the

solution would not have continuous partial derivatives). The range of

t for which the solution exists is at least as large as c(max II’I)‘1,

c being a constant depending on the coefficients A and B and their

first derivatives.

The example of the simple equation Ut + Uux = O shows that this

estimate cannot be improved in general. In this case, namely, the

solution of the initial value problem u(x,O) = ~(x) is given by the

implicit relation u - q(x- Ut) = o. This relation defines u as a

(differentiable)function of x and t as long as the derivative of

the left hand side with respect to u, 1 + t~, does not vanish. The

smallest value of t for which this quantity vanishes is

4 lJNCLASSli\ED
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t = (max -~’)-l; this shows that the width, of the domain of existence

in the t directio~does depend on a bound for the magnitude of
Y’

(although only on a one-sided bound). t

Suppose we wish to solve an initial vslue problem where the ini-

tial values no longer satisfy a L.ipschitzcondition; say they are

downright discontinuous, as in the Riemann shock tube problem. One

could attempt to solve this problem by approximating the given dif-

ferentiable initial values 10i x , construct the corresponding solution

Ui and take their limit - if it exists - in the sense of some norm or

topology. This method works for linear equations but does not in

general for quasi-linear equations; for if the sequence
i
i approxi-

mates an initial vector that is n@. Lipschitz continuous, the first

derivatives of Ii are not uniformly bounded, and so the range of t

for which the solution of the ith problem, Ui,.exists shrinks to zero

as i tends to infinity. This shows that the theory of discontinuous

initial value-problems for nonlinear equations is not a mere appendix

to the theory of differentiable initial value-problems but has to be

developed independently.

There are several ways of developing such a theory. One is-to

generalize the concept of a function satisfying a differential equa-

tion. This leads to the notion of weak solutions and the initial

value problem is to ascertain whether in the aggregate of all weak

solutions there exists one with the prescribed initial data.

Another way is to define the solution of a discontinuous initial

5

I
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value problem directly by a limiting process of some kind. This

limiting process would usually consist of approximating the equation

by a sequence of equations for which the initial value problem can be

solved. For the equations of hydrodynamics this is usually done by

including viscous forces; what is proposed here is to use a straight-

forward finite difference scheme; that such a method works is of in-

terest for the theory and for practical computations.

It would

include these

equations may

be desirable to develop an abstract theory which would

special methods. The appropriate class of abstract

possibly be the ones of the form

‘t =ANu

where A

We

them on

1.

is an unbounded linear, N a continuous nonlinear operation.

shall describe now the three methods mentioned, illustrating

the equation Ut + u \ = O.

Generalizing the concept of a solution.

Let v be some test function which is zero on the boundary of some

region G of the x,t plane; G is supposed to lie within the domain of

definition of the solution u. Multiply the equation u + u u = O by
t x

v, integrate over G, and integrate by parts. The result is that the

integral

(1)

is zero for all G test functions v and solutions u. Conversely: if

u is a function with continuous derivatives for which the integral (1)

APPROVED FOR PUBLIC RELEASE
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vanishes for

differential

and applying

tions).

all test functions, then u is a solution of the original

equation (this is easily seen by integrating (1) by parts

the so-called fundamental lemma of the calculus of varia-

We define u to be a generalized or weak solution if

(1) is zero for all test functions v. As stated before,

solution which is differentiable is a bona fide solution.

the integral

a generalized

But amongst

the class of non-differentiable functions we have a genuine extension

of the notion of solution.

Weak solutions, for linear equations, are disctissedbriefly in

Courant-Hilbert, vol. II, p. 469-470. They play an important role in

Friedrich’s work on differential operators; their theory was treated

systematicallyby Sobolev, and L. Schwartz. In the nonlinear case -

which’interests us most - the concept of weak solutions is discussed,

usually in connection with shock problems of hydrodynamics (see also

E. Hopf, [7]).

Consider discontinuous

Jump discontinuity across a

has continuous derivatives

forward application of the

tion is a weak solution if

nuity line at any point on

solutions, i.e.,functions u that suffer a

smooth arc C, on either side of which it

and satisfies the equation. Straight-

definition shows that a discontinuous solu-

and only if U, the slope of the disconti-

C is the arithmetic mean of the values of u

on the two sides at this point (analogue of the shock relations).

This example shows (a) that there are weak solutions of our equa-

7
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tion which are not genuine solutions

(b) that the class of weak

sociated not so much with an equation but with the

solutions is as-

form in which it

is written. For had we written our equation in the form

-1
u U+u

tx
= 0, the criterion for discontinuous solutions to be weak

-1
solutions would have been U = (Ul - u2)(log U1 - log U2) , which de-

fines an entirely different class of weak solutions. The form of the

equation to be used is dictated entirely by outside physical considera-

tion. E.G., the equations of hydrodynamics in mass coordinates can be

written as four different conservation laws; namely, conservation of

mass, momentum, energy, and entropy. For physical reasons we would

operate with the first three of these conservation laws.

The test of usefulness of the concept of weak solutions is

whether weak solutions with arbitrarily prescribed initial.data of a

wide class (say, the class of all piecewise continuous or all bounded,

measurable functions) exist, and whether the initial values determine

the solutions uniquely (a weak solution having prescribed initial

data can be defined either in an almost everywhere sense or in a weak

sense). It turns out that the answer to the first query is affirma-

tive, to the second, negative.

That for the equation Ut + Uux = O weak solutions with arbi-

trarily prescribed initial data exist has been shown by E. Hopf in

[1
7 as a corollary to the theory developed there. That tne solution

is not in general unique is well known; it can be seen from this

8
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example: Let the initial value be

U(x,o) = o for x c

= 1 for x 7

The function

U(x,t) =Ofort>2x

=lfort <2x

is a weak solution of our problem since

o

0.

it assumes the initial value

and satisfies the jump condition. But so is the function

U(x,t)

In analogy with

=0 for x

x=_
t

for x

=1 for x

hydrodynamics we

<0

>t

<t.

would exclude the first solu-

tion since it represents a rarefaction shock; whether the exclusion

of rarefaction shocks would leave only one weak solution of any ini-

tial value problem, is not known.

So the problem is to characterize the physically relevant weak

solutions in some systematic way, and to prove that the initial value

problem has a unique physically relevant weak solution for a wide

class of initial values. In connection with this problem it should

be remarked that whereas the class of regular solutions of our equa-

tion displays reversibility in time; i.e.,if u(x,t) is a regular solu-

tion, so is u(- x, - t), and the class of all weak solutions likewise,

the class of~hysically relevant weak solutions (i.e.,the ones without——

9
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rarefaction shocks) no longer share this property; e.g.,the weak

.

.

.
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.

*

solution

U(x,t) = 1 fortz2x

= o fort<2x

is physically relevant for It represents a

U(- x, -t) represents a rarefaction shock.

compression shock, whereas

One systematic method

solutions is to take those

flows”. I.e.,consider the

ujt+uux=~

of introducing physically relevant weak

solutions which are limits of “viscous

augmented equation

u (2)

with some positive constant ~ , solve the initial value problem

U’A(xjt) = Uo, and let a tend to zero, Equation (2), and the above

limiting process, was introduced into the literature, by Burgers; an

especially elegant and rigorous treatment of it is due to E. Hopf [7].

This procedure was conceived as a simple analogue of the process of ob-

taining this discontinuous solution of the hydrodynamic equations as

limits of viscous flows, see Becker [1], L. H. Thomas, Gilbarg [1o],

Grad

tion

[16 , and Courant-Friedrichs [2],pp. 134-138.

Equation (2) is a semi-linear parabolic equation; the introduc-

of a new unknown ~, related to u by u = - 2A ?xf~ reduces it,

as E. Hopf has observed, to a linear parabolic equation ?t = A Yxx

whose solution can be written down explicitly. TIIisin turn gives an

explicit representation of any solution of (2) in terms of its initial

values; this representation enabled Hopf to prove that for fixed ini-

.

10
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tial values U. the solution u~(x,t) tends to a limit as ~ tends to

zerb, for almost all x and t. This limit can be called the ~eralized

solution of the initial value problem u(x,O) = U. of the original

equation (l).

It is easy to show that these

solutions; just multiply equation

generalized solutions are weak

(2) by any twice differentiable

test function v and integrate by parts:

J“ 1 1!2.A V=u;
‘tu+zvxu

uremains uniformly bounded for ~ , and so, v being held fixed, the

right side tends to zero with ~ .

This class of generalized solutions is irreversible in t; there

is nothing surprising in this, for the process whereby they were de-

fined is openly biased in favor of the positive t direction, i.e.,the

initial value problem for the parabolic equation (2) can be solved for

positive t but not for negative t.

A different limiting procedure for constructingweak solutions

is by a straightforward finite difference scheme; the conjecture is

that this process furnishes the same class of physically relevant

weak solutions as the viscosity method. Several arguments will be

presented which make the conjecture plausible, or at least possible;

the numerical evidence in favor of it is very strong but there is no

rigorous proof for it yet.

First the description of the scheme itself: Since the concept

11
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of weak solutions is linked not to the equation itself but the form

in which it is written, it is important that the difference scheme

should be linked to the distinguished form of the equation. Secondly,

the possibility of defining weak solutions rests on the fact that the

given equation is in divergence form, i.e.,each term is a pure x or t

derivative. This feature should be preserved as much as possible in

the difference scheme too. Both requirements are fulfilled by this

stheme: replace space derivatives by difference quotients:

f by ‘n~+l-f~-l, and t derivatives u by a forward difference
x 2Ax t

quotient of this kind:
n
u +1 + ‘;-l*(uj+l-~2 .

d

Here superscripts refer to time cycle, subscripts to position in

space.

This scheme, when applied to any hyperbolic system, is stable in

the sense of von Neumann if ~ satisfies the classical Courant-

Friedrichs [5]- Levy condition, see , of being greater than

of the steepest characteristic. The equation u. + u u.-= O

the slope

has one

-,

characteristic,with slope u, so the stability

*Z max Iul. Now if we choose ~ so that

satisfied initially, the function generated by

will never exceed its largest value initially,

b it

condition is

this inequality is

the difference scheme

and so the stability

12
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. condition is satisfied for all future times.

.!

Solutions constructed by the difference scheme are defined only

at the lattice points; imagine them extended to the whole relevant
*

portion of the x,t plane by defining u inside any lattice square to

have the same value as, say, at the upper left corner. Diminish the

size of the lattice and suppose that the corresponding solutions, thus

xextended, converge in the ~ sense to some limit function u. This

limit function u is a weak solution of the original differential equa-

.

.

.
.

.

●

tion as may be easily proved by multiplying the difference equation at

each lattice point by the value of a test function v there, summing

over all lattice points and summing by parts. A passage to the limit

lesds to an integral relation between u and v that characterizes u

as a weak solution. What is not at all clear is

(i) Whether the sequence of solutions of the difference equa-

tions converges in the X2 se~se.

(ii) Whether the sequence converges uniformly except in a neigh-

borhood of the discontinuity lines.

(iii) Whether the weak solutions obtained in this manner are the

physically relevant ones.

Experimental evidence, presented below, indicates that the answer

to all three questions is yes. Concerning (iii) it should be pointed

out that, just as in the case of the passage to the limit through

viscous flows, the class of weak solutions obtainable by this finite

difference method is not likely to be invariant under replacement of

13
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x by minus x and t by minus t, because the difference scheme dis-

tinguishes between the positive and negative t direction. I men-

tion this as a possible guide to finding other adequate difference

schemes.

In case of regular solutions, i.e.,ones with

derivatives, the difference scheme described here

continuous first

furnishes a uni-

formly convergent sequence of approximations to the true solutions.

This has been proved, for arbitrary quasilinear hyperbolic systems,

by Keller and Lax in [8] and for a slightly different scheme by

c1Courant, Isaacson and Rees j+.

It should be pointed out that if the sequence of solutions of

the difference equations or a subsequence of them converges only

weakly, the weak limit is not a weak solution. For in this case the

weak limit of u: is not the square of the weak limit of Un and so

the procedure of multiplying the difference equations by v, summing

by parts and passing to the limit leads to an equation in which the

role of U* is taken by the weak limit of U* .
n

Experimental calculationswere performed using IEM Card Pro-

grammed Calculators; the problem was coded by Mr. Stewart Schlesinger.

The first case considered was the initial values U(X, O) = 1 for

X<o, = O for x z O, taking At/Ax to be one. The initial values

were deliberately chosen to be homogeneous, so that carrying the

calculations further in time would have the effect of refining the

meshsize; the idea was to carry out the calculations until it became

ti
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evident that the scheme was converging, diverging or oscillating. It

turned out that the scheme was converging, and with astonishing

rapidity. After 44 steps in time the calculated values of u were

x u

17 1.00000

19 .99548

21 .76818

23 .21061

25 .02343

27 .00018

29 .00018

The values of u not listed differ from one or zero by at most

~o-50 The theoretical position of the discontinuity, propagating

with speed 1/2, is at x = 22.;this is precisely the center of zone of

transition; the zone is, roughly speaking, spread over three intervals.

Four steps later, at t = 48, the calculated values of u were:

x u

19 1.00000

21 .99548

23 .76817

25 .21061

27 .02344

29 .00210

31 .00018

The theoretical position of the discontinuity line is at x = 24;

the figures show that relative to this discontinuity line the profile

15
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of the solution has changed by at most one figure in the last decimal;

this suggests that not only does the solution of the difference scheme

converge to the true discontinuous solution uniformly in every subset

not containing the line of discontinuity, but that the shape of the

transition tends to a definite limit. This limiting shape can be

characterized as the steady state solution of the difference equations.

The difference equation is

2 2
‘+1 = (Uj+l

‘At +u;.1)/2+* (g-l- $+1) ;

here the superscript n

The equation satisfied

refers to time cycle, Y to space position.

by

f(x-1) + f(x+l)
2

the steady state solution would be

,W=f(x+;) (3)

and the boundary conditions are:

f(-oo) = 1, f(m) =0 . (4)

More precisely, the state of affairs is probably as follows: The

difference equation (3), subject to the boundary conditions (4), has—— .

a continuous, monotonic solution as function of the real variable ~;. —— —

~ solution~ unique except for an arbitrary ~hase shift. Further-— —.

more, starting with any function g(x) defined over the odd integers}

repeated

leads to

a-pplicationof the transformationT g = g’ defined by

g(x -l)+g(x+l) + g2(x-1) - g2(x+l)
-“ 2

=g’(x+$1

tilesteady state solution f(x). I.E., if we ilenolj?Tngby
.

16
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gn(x), then gn(x) tends

stesdy state solution*;

tial distribution g.

uniformly to f(x + d.), where f(x) is the

the phase shift d depends only on the ini-

Observe that the function gn(x) is defined only at points by

n/2. Thus the gn(~) are defined either at the integers of halfiay

in between, and consequentlywe need the values of f(x + ~) at these

points only. This is however an exceptional situation which arose

because At/Ax was chosen to be commensurable to the speed of the

propagation of the discontinuity.

The numerical evidence presented before for the verity of this

theorem is very strong. The calculations cited refer to the initial

values g(x) = 1 for x a negative odd integer, = O for x a positive odd.

integer; as a further check the values: g(x) = 1 for x an odd integer

less than O minus one, g(- 1) = .9, g(x) = O for x a positive odd in-

teger were tried. The results were the same as with the original

choice of initial g(x); the tables below give the values of u at t =44

and 48; these differ by less than one
.

*Fixed, say, uniquely by picking f(0)

figure in the fifth decimal.

to be 1/2.

1’7
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t = 44 t = 48

x u x u

17 1.00000 19 1.00000

19 .99195 21 .99195

21 .71566 23 .71566

23 .17449 25 .17449

25 .01858 27 .01859

27 .00165 29 .00165

29 .00014 31 .00014

Table I, appended to this paper, gives the values of gJ+5(x),

g46(x)~ g47(x)) g)+8(x)corresponding to the first choice of go(x) over,

those values of x where the deviation from the constant values O or 1

is significant; (for all subsequent values of n, gn(x) coincides in the

first five figures with one of the four listed). Table II contains the

same information referring to the second choice for initial g.

Graphs I and II show a plot of these values; they lie on

smooth curves, and

Returning

marked that if the

f(m) = 1 or, more

these curves indeed appear to have the same shape.

to the difference equation (3), it should be re-

boundary values of f are switched, i.e. f(-a) = O,

generally, are replaced by values for which f(-z)

is less than f(oo), then no solution would exist. This result, for

which I have no proof at present, expresses the fact that the finite

difference method furnishes solutions with compression shocks but not

with rarefaction shocks. Mathematically, it is an analogue of a well-

known result on steady viscous flows (see {1], [6], [10], [1~ ), which

I shall present for the simplified equation Ut + u Ux = ~ U=.
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Let uo(x,t) be a steady state solution of the equation

U+uu
t

=Au= , i.e. u. is a function of x - c t only, Uo=u(x - et).
x

Then U( ~) satisfies the ordinary differential equation

c u’ + Uu’ = A u“ .

Integrate both sides with respect to $ :

12
K+cu+3u=~u’,

so

g= 2A .
U2+2CU+2K

(5)

We are interested in solutions which at ~= -- and ~ = 00

have prescribed values u~ (initial) and Uf (final). From equation (5)

it is clear that

the roots of the

hand side; these

~ Wills pproach infinity only if u approaches one of

quadratic function in the denomination of the right

roots must be then just the initial and final values of

u, u~ am Uf~ and c} the propagation speed, must be their arithmetic

mean. Furthermore, U2 + 2 cu + 2K is negative between the two roots u
i

and Uf, and so, !X_~ being positive, du is negative, i.e., u iS ade-

creasing function of f . So we conclude that an initial and final

state can be connected through a solution of (5) only if Ui z Uf . If

this inequality is fulfilled, then they can be connected and the ex-

plicit formula

2A U.-u

t = log &-
‘i-”f -f

gives the shape of the connecting curve.
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Numerical calculationswere carried out for the initial values

,
.’

.
.

u(x,O} = O for x < 0, u(x,O) = 1 for x z O, using

scheme as before; the results after ~ steps, are

III

the

and plotted in Graph III. The dashed line in

exact solution.

The same problem was run with At/Ax = 1/2;

steps in time, are tabulated in Table IV, plotted

the same difference

tabulated in Table

Graph III refers to

the results after

in Graph IV.

So far, only the equation Ut + u Ux = O has been discussed; the

question is, how much of what was said before can be generalized to

quasilinear systems. The first observation is that weak solutions are

defined only for systems in which all first order terms are perfect x

or t derivatives (or at most combinations of such terms with coeffi-

cients which are functions of independent variables only); for such

systems I propose the same finite difference scheme, i.e. replace all

by center~d.difffirencequotients, and.replace all t deri-

‘2+1(Vj+l- a+ ‘1-~ /At,

tried on the hydrodynamic equations of one dimensional

x derivatives

vatives Vt by

This was

time dependent flow; the equations were written in the form of con-

servation laws. They are, in Eulerian coordinates,

et + (u?)x = 0, Cons. mass

O@t + (u2& + Px = 0, Cons. of momentum

2

(P+&t+(peu++ ) + (Up)x = 0,
x Cons. of energy.
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.

.

●

Here ~, u,p and e denote

per unit mass. The equation of

and ~, e.g. for an ideal gas e

density, velocity, pressure and

state expresses e as a function

‘P*”

energy

of p

In the computations we will operate with the quantities

~,uP
2

= m and ep + u p/2 = E, the mass, momentum and total energy

per unit volume. In terms of these the equations are:

pt+mx=O

To these equations the difference scheme described before was

applied. Seversl calculations were made, with different choice of the

initial values and X, a~d in all cases che answer agreed fairly well

with the theoretically calculated flsw. The calculations were per-

formed on the Los Alamos l??NIAC. The flow diagrem for the calculations

was prepared by Stewart Schlesinger end the problem was coded by Lois

Cook.

In the first problem ~was chosen equal to 1.5, and

u= 2 for x < 0,

= o forx>O

P = 50 forx<O

o forx>O

p=50 ~ forx<O

= 10 for x > 0.
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The two constant states chosen can be connected by a shock

(notice that compression is five-fold at the shock, the value corres-

ponding to ~= 1.5):‘t/fixwaa chosen tobe .25.

The results after 49 time cycles are given in Table V. The

fourth column, v, gives the label of the lattice point in hexadecimal

notation; the Eulerian position x ia related to the label U by

x - 4(2v - 52) (taking t tobe one). There is a rapid transition

from one state to another around Y = 41; this corresponds to x - 124,

and gives for the speed of propagation of the discontinuity ~= 2.48;

this agrees pretty well with the theoretical value of the shock apeed

which is 2.5.

The values of ~, u and p after $)9time cycles are given in

Table V]; the position of the v
th

subdivision now is given by

x= 4.(.2v - 102). Again there ia a rapid transition from one set of

values to the other, around Y= 82; so the speed of propagation is

2h8
—= 2.50.
99

-Notice that the width of the zone of transition is approximately
.-

the aa.mein both calculations.

The stability constant, i.e. the reciprocal of the ratio of

‘x/At to the maximum of the true propagation speed is .863.

A second calculation started with the initial states u = 2,

P=50, @= 50 to theleft, u=0,p =0, ~= lOtotherightofx=O.

‘t/Axwaa taken to be .2s. These two constant states can be con-

nected to each other through a rarefaction wave, a contact discontinuity,
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a constant state and a shock (going from left to right). According

to theory, the constant state behind the shock is u = 1.47, p = 27.1,

P= 50, and shock speed is U = I-.84.

The results after 49 time cycles are given in Table VII, after

99 time cycles in Table VIII. In Table VII there is a rapid transi-

tion around Y= 37 which corresponds to a shock speed of ~ = 1.79,

which is in fair agreement with the calculated value. In Table VIII

the transition occurs around d = 74 which gives for shockspeed

184/99 = 1.86, in even better agreement with the calculated value.

In ‘TableVIII, u and p appear to be fairly constant for a while

behind the shock, the value of p being around 27 + .3, and of u—

around (.184 ~ .001)8 = 1.47 ~ .01. These are in fair agreement with

the theoretically calculated values, in spite of the fact that the

value of ~ is way off (only around 39 at the shock front, whereas “

the correct value is 50).

A third calculation waa done for the case K= 2, and initial

states u = 2, p=50,p = 100tothe left ofx= O, u= O, p= 10,

P
At= O to the right. ~ was chosen as .25 which turned out larger

than permissible by the Courant-Friedrichs-Lewycriterion. Conse-

quently, instability occurred near the shock front, but not enough

to make the calculation meaningless, as the listings in Table IX and

X show; these present the calculated values of the unknowns after 49,

resp. 99 steps.

The exact solution connects the two states through a.rarefaction
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wave, a contact discontinuity, a constant state and a shock. The

theoretically calculated value of u,? and p behind the shock front

are: u= 2.26, p= 30, p= ‘76.5;these compare favorably with the

calculated values of u and p.

Two general features of these calculations are:

(i) The width of the transition shock in the shock

is narrowest if ‘t/ A x is chosen as large as possible.

(ii) The values of u and p converge to the exact

value more rapidly than the value of ~.

The method can be set up in Lagrange coordinates as well. De-

noting specific volume by V and by
5

unit mass along the x axis,

the conservation equations are:

‘t = ‘f
Conservation of mass

‘P‘t $
Conservation of momentum

(e + 1/2u2) = - (uP)~ Conservation of energy

Introduce as unknowns V, u and E =
2

e + 1/2 u , mass, momentum

and energy per unit volume. In terms of these, the equationa for a

~) can be written asperfect gas (e = ~-1

‘t=‘E

‘t = [
(r- 1) E- y ‘2 ]
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