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SHOCK WAVES IN CONDENSED MEDIA:
THEIR PROPERTIES AND THE EQUATION OF STATE
OF MATERIALS DERIVED FROM THEM

I. INTRODUCTION

It was almost a half century ago that shock waves were first used to obtain equation-
of-state (EOS) data for solids at pressures over 10 GPa. To my knowledge the first work was
done at the Los Alamos National Laboratory and probably concurrently by the Russians.
Heretofore, the impetus for studying the EOS at what were then considered ultra-high pres-
sures, was mostly for scientific reasons with perhaps some thought for some high-pressure
alchemy. With the development of atomic weapons, such research became imperative. The
basic conservation equations for shock properties had been developed just over 100 years
ago, so the first experimenters knew what to expect if they could make the appropriate
measurements. The fact that this paper is being written attests to their success.

To provide an overall perspective and some understanding of what is involved in
the shock-wave process, we first develop the basic conservation equations and some hy-
drodynamic flow properties that affect the experimental measurements. These are almost
entirely restricted to one-dimensional plane flow, which is quite appropriate because al-
most all EOS data are obtained in a similar situation. The bulk of the thermodynamics
needed for calculations to supplement the EOS data, or to calculate other thermodynamic
quantities, such as the specific heat, when additional data are obtained, is presented next.
Phuase changes and elastic-plastic fiow are then considered. A limited set of experimental
techniques is given next, with one or two examples of typical records or results. These
types of experiments are of prirnary importance in understanding the state of matter at
high pressure. Because of a certain unique property of the shock-wave EOS of solids, a
short section is devoted to the consequences of its properties followed by brief summaries
of the results of many experiments. Finally, we consider the shock-wave EOS of the earth,
undoubtedly the largest shock-wave recovery laboratory we have, which after a lot of study
by seismologists, has revealed quite a bit about itself. On the basis of that work and some
results presented here, an EOS for the earth is derived.

It should be realized that many of the examples used to illustrate certain features
or properties have been taken from Los Alamos data or publications primarily because
this was least difficuit to me. I regret that it was not convenient to use as examples moic
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of the excellent work reported by other investigators especially in the Soviet Union. The
bibliography is somewhat limited but should be adequate as a beginning point for the
casual reader.
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The following notation is used throughout the text.

H - Hugoniot refers to states on the Hugoniot; sotuetimes used as subscript
U, - Shock-wave velocity
Ugq - Driver-plate velocity
U, - Particle velocity behind the shock wave
U, - Particle velocity due to the rarefaction wave
Uy, — Free-surface velocity = Uy + Ur
X - Eulerian space coordinate
x - Lagrangian space coordinate
t - Time
P - Pressure
V - Specific volume
p — Density
E - Specific internal energy
S - Entropy
P, - Slope of the isentrope 3P /3V |,
4 — Slope of the Hugoniot 8P/dV |y
K, - Iseutropic bulk modulus = — VP,
C - Sound velocity = P /dp)}/?
8 - Slope of the U,-U, data fits
q - Quadratic coefficlent of the U,-U,, data fits

L - Lagranglan sound velocity

II. ISENTROPIC FLOW AND SHOCK WAVES

The developments in the next sections are based on the assumption that the material
being studied is subjected to a plane one-dimensional shock and that ary subsequent mo-
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tion is also of that nature. Moreover, it is assumed that the material is in thermodynamic
equilibrium and free from any aaisotropic stresses. The former assumption presents no
conceptual problems, nor does the latter when considering materials in the liquid state.
However, when a plane shock passes through a solid, it is obvious that the lattice cannot
deform in one dimension only (a few exceptions will be mentioned later), as it will develop
tremendous shear stresses. The lattice comes to equilibrium by motion, on the microscale
through dislocation motion resulting in slip-twinning and/or other mechanisms. How close
it comes to an equilibrium state has not been well studied at high pressures because of the
experimental difficulties. There appears to be sufficient evidence to believe the residual
stresses are small compared to the pressures involved. This residual stress is called the
deviatoric stress, and when it is zero the Hugonioi is often referred tc as the equilibrium
Hugoniot or sometimes the hydrostat. The problems associated with the one-dimensional
nature of the experiments are classified as elastic-plastic and will be discussed briefly later.

In this section we shall first develop the governing equations for continuous flow,
and then the shock-wave conservation equations. Although we are interested primarily in
shock waves, there are a few other concepts immersed in the development for continuous
flow that we will require later.

A. The Conservation Equations for Continyous Flow

The flow equations were developed by Euler in 1755. In addition to formulating the
equation of motion for fluid fiow from Newton's laws, he introduced the concept of the
conservation of mass. A few hundred years ago compressible flow was limited to gases, so
it was convenient and logical to think of low through tubes or the equivalent. Instead of
watching a particular mass element, we watch the material fiow through a section of pipe
of uniform unit cross section, A = 1 as shown in Fig. II.1. The length of the tube is AX,
the material enters at X and comes out at X + AX. The mass entering from the left in
unit time dt is the density times the velocity



AX

p+ 2L AX dt

Ap U dt

U+ ¢ AXdt

X X+ AX

Figure I1.1

As the material passes through the tube, both its velocity and its density can change,
so the material leaving from the right in unit time is
au ap
A [pU + (’ﬁ + Ua-) dX] dt ,
wheite higher order terms have been dropped. If the mass cut and mass in are not equal, the

density in the cylinder must be changing. The change in mass per unit time is expressed

by
dp

Aa—t-Ath ,
which must equal the difference between the flux in and out:
9 = pUdt — WV axat —ule
7 AXdt = pUdt — (pU)dt — p 3V dXdt-U 3X dXdt (IL.1)

or
d __8U 8 _ 3(Up)

n-"fax " Vax T T Tex
This is the equation of conservation of mass in one-dimensional ccntinuous flow.

(I1.2)



The equation of motion is derived similarly (Fig. I1.2). The force on the left minus
the force on the right gives the differenre, —(9P/8X)AX, which is the force to the right
operating on the mass in the element pAX.

AX

P(X) P(X) + 5

X X+ AX

Figure I1.2

The acceleration is

du U adu

so from Newton’s second law,
apP dUu
—ﬁAx = pAX(I) (IL.4)
or
apP au au
~3x — % tPVsx (11.5)

gives the equation of motion in Eulerian form.

For one-dimensional fiow it is particularly useful to develop the conservation equa-
tions by watching a particular mass element, the Lagrangian system, rather than watching
the material streaming by a fixed reference point, the Eulerian form. Here and later, we
are following the treatment given by von Mises [1958|.

7



AX

t p(t)
X X+aX
t+ At el + At)
X+ U(X)At X+ AX + U(X + AX)At
Figure I1.3

Here p is the density, X the space coordinate, and U the material velocity. Since the mass
is the product of the area A, density, and thickness and is constant in time, then

Ap(t) AX = Ap(t + At){AX + [U(X + AX) - U(X)]At} , (I1.6)

which becomes after rewriting,

p(t) — p(t + At) _plt+ At)[U(X + AX) - U(X)]
At AX

(IL7)

As At — 0 and AX — 0, ne differential form of the conservation of mass is obtained:

. A (I1.8)

The equation of motion is obtained by equating the time rate of change of momentum,
UM, of the mass element {2 the force on it. In the figure below,

AX
P!X! P P!X + AX!
U
X X + AX
Figure 11.4
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P is the pressure, and froma Newton’s law, we have

9-(—139 = apax¥Y (IL9)

~A[P(X + AX) -P(X)] = dt

Rewriting and taking the limit gives the differential form of the equation of motion,

du apP
pd—t = —a—x- . (H.IO)

The equation for the conservation of energy can be determined as before by consid-
ering the power input per unit area, UP(X) or U(X)P(X), into the mass element.

AX

p

UP(X) U?/2 UR(X + AX)
E

X X+ AX

Figure IL5.

Here E represents the specific internal energy per gram and U?/2 the kinetic energy
per gram. Then the time rate of change of energy of the mass, M, is

ApAX(d/dt)(E + U?/2) = A[UP(X) - UP(X + AX)] , (m.11)
which becomes d v _a(UuP)
p-&z (E + -2—) = —ax (11.12)

Expanding the right-hand side of Eq. (I1.12) and substituting from Eqgs. (I1.8) and (II.10),

we have U 3P Pd du
r % g
PoxtVsx~=7a Y&

which when replaced in Eq. (I1.12) gives the conservation for the internal energy

(IL.13)

dE P dp

-aT = F'd—t' (".14)
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If p~! is replaced by the specific volume, V, Eq. (I.14) becomes

= =-p . (IL.15)

It is important to note that the energy equation cannot be used to determine the
flow, as this equation can actually be derived from the other conservation equations. The
question arises as to the usefulness of the energy conservation law. The answer, of course,
is that it tells us that the flow formulated here must be isentropic, since Eq. (II.15) is the
time derivative of the first law of thermcdynamics with dS = 0. However, for shock waves
it is well known that the entropy increases, so some mechanism must be introduced to
allow it to do so. Thus a stress, oy, is defined, which is the viscous force in the direction
of propsgation acting on a unit area of surface normal to that direction. The total stress
o is defined by

o=P-o, , (IL.16)
where P is still the pressure associated with the equation of state. It is reasonable to

believe that what is needed is a force that resists rapid deformation. For the problem
considered, the deformation rate is dp/dt, so we assume that

ox ~dp/dt , (IL.17)

which can be rewritten by use of the conservation of mass as

ox = u(0U/3X) . (I1.18)

This puts the stress in the usual form of a velocity-gradient dependent variable,
with u, the ordinary coefficient of viscosity, as the factor of proportionality. The previous
conservation equations are rigorous; but the only justification for equation (II.18) is that
something is needed, and it seems to serve well.

Now P must be replaced in the conservation equations by ¢. The conservation of
mass, Fq. (I1.7), is not changed but the equation of motion, Eq. (I1.9), becomes

dU 4P o'y

— -

at ~ox THaxa

Since we are interested in the internal energy, the same substitution is made in Eq. (11.14),
obtaining

(IL19)

bl Rl : (11.20)



which from Eqs. (I1.15) and (I1.8) gives

dE dv p(aU)’

— _+— —

i X

II.
dt dt » (IL.21)

This is the desired form. If 4 is chosen to be positive, then the second term on the

r' vht-hand side of the previous eqaation is positive and hence always increases the internal
energy.

Wher the flow consists only of a simple rarefaction wave, the problem is readily
solved by the method of characteristics. To put the equations into a form suitable for this
type of solution, we first substitute the sound speed, C? = (9P/dp),, into Eq. (I1.10) to
obtain

pUy = C¥(p/po)px (I1.22)

where the subs:ripts here and elsewhere represent partial differentiation with respect
to that variable. The coefficient (p/p,) represents the current thickness. Multiplying
Fq. (II.8) by an undetermined parameter A and adding and subtracting Eq. (I1.22) gives
the following equations:

Ay + C(p/po)px + PUs + Ap(p/p0) Ux = 0 (II.23)

and
Aoy — C?(p/po)Px — PUL + Ap(p/po)Ux = 0 . (I1.24)

To put the equations in the desired form we require that A = C. The equations then
become

Clps + C(p/po)Px]| + p[Us + C(p/po)Ux] = 0 (11.25)
and
C[Pt - C(P/ﬂo)ﬂx] - P[UG + C(P/Po)Ux] =0 . (11.26)

Since in general for any function F(x,t), dF = Fxdx + F.dt, Eq. (I1.25) implies that
C dp = —p dU along dx/dt = C(p/p,) (IL.27)
and Eq. (I1.26) implies that

C dp = p dU along dx/dt = —C(p/p,) . (I1.28)
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The left-hand pair of equations in Eqs. (I1.27) and (I1.28) a:e called the characteristic
equations from which velocities can be calculated, and the right-hand pair are called char-
acteristics. When the flow is adjacent to a region of constant state, the flow is described
as a simple wave and one set of characteristics is straight lines.

The above results are quite important, as the concepts and equations can be used
to solve a class of problems that occur frequently — in fact, must occur in some form
or other — in shock-wave experiments or related phenomena. These are pressure-release
waves called simple centered waves. To illustrate this type of fiow problem, consider what
happens if a thin plate driver collides with a somewhat thicker plate target. For this
example the plates need not be made of the same material, but it simplifies the illustration
if they are. At some time the shock in the driver will reach the back surface of the target
and sometime later, because of the configuration, the shock in the other plate will reach the
front surface of the target plate. When e..her shock reaches the free surface, the pressure
will drop to zero, if done in a vacuum, and a pressure release wave will propagate back
into the material. A schematic of this effect is illustrated in Fig. 1.6. We note first that the
two shock waves labeled S are drawn as straight lines, because the materials are uniform
in all respects. At the time when the shock reaches the firee surface there are drawn two
straight lines headed in the opposite direction. From the previous development the upper
of these rays are linear with a slope.

%xt_ = +£C(p/po) = £CV . (11.29)

Here C is the local velocity of sound at that pressure, and p/p, represents the shorter
path length in the compressed material. In the figure no compression is indicated and
represents the system in Lagrangian coordinates. Cl in the previous equation is called
the Lagrangian sound velocity. These straight lines are called the lead characteristics and
their slope is governed by the state of the material behind the shock wave and its EOS.
There is a second ray drawn, its shape is governed by the state of the material at zero
pressure, if there is no other material in the system. From the geometry it can be seen
that at some reference point or line on the x axis (the dashed line), the time from the first
characteristic to cross the line to the next continues to Increase with time. This means
that the rarefaction release wave becomes less steep or disperses as it goes through the
material. Thus, as shocks become steep as they develop rarefaction waves spread out in
time. There is a characteristic for any point between the two drawn, and with a little
arithmetic the actual shape of the release wave can easily be caiculated. Its shape depends
on the geometry and the EOS. Where the characteristics cross, the pressure at the head
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of the waves decreases, and as drawn will develop into a tension wave. The interaction of

the two rarefacticn waves are not simple centered waves and the flow is more tedious to
calculate.

From the above we see how we could calculate pressures and densities in the rar-
efaction zone, but there is an additional quantity that can be calculated in a straightfor-
ward manner; that is the material velocity 1n the zone. Returning to the characteristic
Eq. (I1.28), integrating along the characteristic gives

U=/CQ (I1.30)
p
and after substituting (dP/8p)!/2 for C gives the material velocity increase between any
states: p /2 12
*Pa Pa
u=[ [ - / -(ﬂ) dP . (IL.31)
P, 9 s P, ap 8

When the integral is evaluated between the shock state pressure and zero pressure the
velocity is called the rarefaction velocity, U,.

Although we stated that we would restrict these lectures to one-dimensional flow,
we are always faced problems associated with the finite size of the samples used in the
experiments. This can usually be handled by making the lateral dimensions of the samples
much larger than the thickness. This of course is wasteful and it is cdesirable to design
experiments so that the samples be investigated can be as thick as possible for the space
avallable. Fortunately, the position where lateral flow perturbs the one-dimensional nature
of the flow can easily be found by using characteristics just describe if rome EOS properties
of the material are known.

Imagine a rectangular block of material impacted on one face by a flat plate. A piane-
shock wave wlll propagate upward from the interface and at the same time a rarefaction
wave wlll propagate into the sample from the edge. The problem to be solved is to find

the locus of points where a rarefaction wave from the side interacts with the shock wave
traveling through a sample.

Since the sample has been shocked the head of the rarefactlon wave will propagate
at the local sound veloclty C. There will be curve equivalent to the lead characterlstic
Just discussed, and since It is moving into a region of constant state It will be linear. In
Fig. II.7 we have a sample of thickness, Y and we are going to locate the distance, X, that
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the rarefaction wave has gone into the sample. T is the time for the shock wave to reach
the top of the sample and is given by

T=Y/U, . (I1.32)
If we define the hypoteneus of the little rectangle by H we have
H?=X24+Y3 . (I1.33)

At time T the sample has been compressed to a thickness Y, = Y - p,/p and the length of
His T C. After making the appropriate substitutions I1.33 becomes

o) xe(s2)

Since tiie angle given by X/Y is what we are interested in we have

A-[-@]"

The question might be asked what good is Eq. (I1.35) if we do not know the sound velocity
or the compression. The answer is that the designer will soon know what kind of com-
pression will be associated with the various experlments, but what is more important we
have found that the bulk sound velocity is very nearly equal to the shock velocity, which
means that the angle is approximately a function only of the compression. The above ap-
proximation is for the bulk sound velocity. However, for solids the head of the rarefaction
wave travels at the longitudinal sound velocity so the C/U, ratio should be replaced by the
ratio, C, /Cg. This ratio can be found from ultrasonic measurements at P = 0 and since
it changes very slowly with pressure It can also be considered constant for this application.

It would appear that one could use (I1.35) to determine C by measuring the X/Y
ratio. This has been attempted but the rasults have been disappointing, because the leading
wave travels at the longitudinal veloclty, Cy,, but Its amplitude is relatively small and it
is difficult to detect lts arrival precisely, but it is large enough to make the velocity of the
bulk wave difficult to measure. The arrivals of these waves do not have sharp well-defined
break, but rather appear as curves that blend into the flat section of the unattenuated

shock wave. I feel that this technique for measuring sound velocltles behind the shock
front deserves further development.

C. The Shock Wave Conservation Fquations
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It was recognized in the second half of the 19th century that the conservation equa-
tions as derived were not adequate for all types of flow. In 1869 Rankine (1] showed that
there was no steady adiabatic process in which pressure forces alone could describe the
changes from one constant state to another by a continuous change. He proposed that
the process be adiabatic in that the systems receive no external heat, but that on the
microsecale, or locally, heat could be exchanged. This agrees with the principle of the
conservation of energy. Howevzr, Hugoniot in 1887 (2] was the first to correcily describe
the relationship of energy and entropy involved in continuous and discontinuous flow. He
showed that ideal continuous flow implied conservation of entropy, and that an increase
in entropy must occur across a shock. From the above he described the conservation of
energy relationship as ordinarily seen.

Before developing the conservation relations it might be useful to review some of
the history involved in making EOS measurements. To our knowledge, the first reports
of this work were published in 1955 by Goranson, Bancroft, Burton, Blechar, Houston,
Gittings, and Landeen (3], Walsh and Christian [4], Minshall (5], and Mallory [6]. By
using various explosives in contact with metal plates, they increased the pressure range
to almost 500 kbar in dense materials like copper. The Los Alamos group reported on
shock-wave data for 27 metallic elements in 1957 (7). However, even earlier, Shreffier
and Deal [8] had shown that high explosives could accelerate thin metal plates to high’
velocities, but it was several years before these rapidly moving plates were used as drivers
to produce measured strong shock waves in other materials. In 1958 Al'tshuler, Vrupnikov,
Ledenen, Zhuchikhin, and Brazhnik [9] reported extensive data on iron to shock pressure of
about 5 mbar. The Soviet investigators [10] subaequently reported data for eight metallic
elements to about the same pressure. They extended the pressure to about 9 Mbar in 1962
[11]. McQueen and Marsh [12] reported data for ninetcen elements in 1960. Explosively-
driven metal plates were used to generate the high pressures in the latter experiments
[9-12]. The initial high pressure is cbviously produced by the collision, but the following
high pressure is regarded as a direct result of shock waves formed. Again we will limit the
discussion to plane one-dimensional flow, a situation easily obtainable in the experiments
simply by making the lateral dimensions of the plates large compared to the thickness
of the material under investigation. In the impact experiments, the shock front would
initlally be infinitely steep if the surfaces were perfectly flat and parallel. It would then
rapidly disperse to its equilibrium shape, which for a hydrodynamic material is probably
less than a few nanometors thick for a strong shock. For the present, we assume that
the shock front is steady and reasonably steep. The experiment can then be described
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schematically as in Fig. I1.8, where U4 and U, are subject to measurement.

To proceed further, we note that if the driver and target are the same material and
in the same thermodynamic state, then symmetry requires that the particle velocity after
the shock be exactly half the driver velocity:

U, =Ua/2 . (IL36)

By use of the conservation of mass, momentum, and energy, the compression, pressure, and
energy betind a shock wave can be expressed in terms of initial conditions and the measured
shock-wave and material velocities. These relationships are usually obtained by considering
the fiow through a stationary shock front; however, it is probably more informative to
develop the conservation equations more or less directly from the experimental geometry.
Figure I1.7 represents schematically a thin plate of thickness, d, moving with velocity, U4,
that collides with a stationary target plate at time zero. The desired relations can be
obtained by considering the configuration at collision time and at some later time, t, after
the material has been shocked. For convenience t is chosen as the time when the shock
wave has just propagated through the driver, or

t=4d/U, . (1L.37)

No loss in generality has occurred, since the thickness of the driver is arbitrary. As
shown, the target must be at least as thick as the driver. During time ¢ the back side of
the driver moves a distance

AX =tUq , (11.38)

so the compression can be written

VooV _AX _tUs _Up
V T 2d " 2tU. U,

(I1.39)

as a direct consaquence of the conservatlon of mass. The conservation of momentum
requires that the force, (P — P,)A, (A is cross-sectional area) must he equal to the time

rate of change of momentum, d(MU)/dt. In time, t, the mass, poAd, suffers a change in
velocity, Uy; hence

A(P - Pg) = (poAd)U,/t or P —P, =p,U,U, . (11.40)
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The sum of the changes in the internal energy, 2(E—E,)p,Ad, and kinetic energy, (U:—U),
must be equal to any external work, Po(AtUg), done on the system during the passage of
the shock wave.

2(E — Eo)poAd + (U3 — U3/2)poAd = Po(AtUq4) . (I.41)

After making appropriate substitutions, we can gee that the increase in the specific
internal energy arising from the shock wave is

E--Eo =U3/2+ PoVoU,/U, . (I1.42)

Equations (I1.39) and (11.40) can be combined to give

U, = Vo[(P - Po)/(Vo — V)]V/2 (11.43)

and
Up = [(P - Po)(Vo - V)2 . (11.44)

Substitution of Eqs. (I.43) and (I1.44) in Eq. (I1.42) gives the well-known Hugoniot energy
ecuation

E-Eq = (P + Po)(Vo - V)/2 . (11.45)

For a given steady-state shock wave all the quantities (P, V, E, U,, U,,) are defined.
The locus of any pair of these parameters is called the Hugoniot curve in the corresponding
plane, or often simply the Hugoniot.

In this development the usual restrictions of steady-state flow and hydrostatic equi-
librium are required. The effect of material rigidity will be discussed later. If the shape
of the shock front is not independent of time, several difficulties arise. One is that a true
shock-wave velocity can not be measured; the apparent measured velocity is dependent
on what part (amplitude) of the wave is used to determine a transit time (see Flg. I1.9).
Even more serious, it is usually considered that the steady-state assumptlon neceasary for
deriving the shock-wave relatlonships is no longer valid. However, this is really of no great
consequence, since if by some quirk of nature the EOS of the materlal were such that the
pressure wave dispersed with time, there simnply would be no shock wave to worry about.
The low-pressure EOS of fused quartz is of this nature. The thermodynamic states and
velocity distributions must be known in order to set up the conservation relationships that
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previously were quite simple. Unpublished data of Taylor and Rice indicate that steady-
state shocks exist for some solid materials at pressures as low as 5 GPa. This helps to
extablish the validity of high-pressure shock-wave data since shock fronts tend to become
more stable at higher pressures.

. Compari e

We have just derived the conservation relationships for shock waves, but we have
not demonstrated mathematically that shock waves even exist. To do so, we compare the
consequences of the similar sev of equations for continuous fiow, where the dimensions of
interest are large compared to the microstructure of the material of interest, e.g., the lat-
tice parame:ers of a solid or the particle size of a heterogeneous mixture. The concept of
continuous flow implies the lack of discontinuitics, such as the shock waves just discussed.
As before, the equation of motion is simply based on Newton’s laws of motion, but the
continuity equation is developed by considering the flow through a small volume element,
as is usually done for shock waves. For our applications the fiow can be described by
one space dimension, which of course implies that areas involved in the experiment are
free from influences from edges, e.g., the central region of an impactor on a sabot accel-
erated in some kind of gun. In the following we restrit ourselves to two types of flow or
compression, isentropic and shock compression. Isentropic compression can be envisioned
by considering a piston moving slowly in a thermally-insulated cylinder and compressing
a gas, for example. Here the temperature will increase, but tke process is done at con-
stant entropy with no heat flow. The resulting P-V relationship is called an isentrope.
If the system were operated in such & moanner that the temperature remained constant,
the resulting curve would be designated as an isotherm; most static compression data are
obtained isothermally. From other flow relationships it appears that the shock or Hugoniot
EOS and iseutropic EOS are quite similar, both being adiabatic (no heat flow). For this
and later work we will need to refer to the mathematical statement of thy first law of
thermodynamics:

dE = TdS - PdV . (I1.48)

In the following we will compare the two EOSs for a normal material. The pressure on an
isentrope for a normal material increases with compression or heating

aP/aV| <0 (11.49)

ar/ss|, >0 (11.50)
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and 9P /8V|. becomes stiffer with increasing compression
a’P/av3| >0 . (IL.51)

We have seen from the conservation equations that the Hugoniot and isentrope differ only
in the entropy. To examine this difference more closely we will differentiate the Hugoniot
energy Eq. (I1.45) with respect to volume and substitute the appropriate differentials in
mathematical formulation of the first lawn, Eq. (I1.48):

dS dE
where the terms are written as total differentials since we are evaluating them along the

Hugoniot. The differentials are:

dE _{Vo-V)dP (P +P,)

av 2 dv 7 (11.53)

d’E _ (Vo—-V)d’P dP
dvs — 2 dv? d4dv '

(I1.54)

and -
@#E _ (V.-V)&°P  d%P
dvs 2 dv3 dv?

(11.55)

Substituting Eq. (I1.53) in Eq. (II.52) and further differentiation gives the following
equation:
TdS _ (Vo-V)dP 1

v =3 vt 3PP (11.56)
d3s dT dS d’E dp (Vo - V) d3p

Tvitawav-aviTav- 3 av (ILb7)

d3T ds dT 43 dT d38 d3s - 3 3
—,—+-I—§+—— + a=(v° V4P _14°P '11.58)
dv3idyv dv dv dv dv? dVv 2 dv? 24dv? y

or
d’S _dTd%8 d?TdS _(V,-V)d’P 14d%P

TWwrlwavs Taviav ™ 2 avi _2av3 (IL.59)

At the beginning of the Hugoniot, whare P = P, and V = V,,, the equations simplify to

the following:
ds

Ta‘v =0 ’ (11.60)
d2s
Tm =0 , (11.61)
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" oS _ _1dP (1L62)
“dvs 24Vv? )

This shows that the entropy increase on the Hugoniot is of third order. However, if the

change in entropy is zero for second-order increase in shock strength, it implies that the

isentrope and Hugoniot have the same first and second pressure-volume derivatives at the

initial state. To see this, take the pressure derivative on the Hugoniot and differentiate
again, giving

dPp 9P

v ~ av

ap _o'p

dv: .9v3

8P| apP

aP| ds

R (I.63)
s | 0S|y dv

+_¢?_l_’_ ?_!’_l ds
s €V|gas|,dv
LOP| 9P| 48 OP| dSdS  oP d%S

3S|y AV |gdV ' 8S|,dVdV ' 3Sdv3
d’P  9?P 3P ds a%P|f/ds\? oP d%s
m-ws”"‘avsszé?(av) tIsavi (11.65)

At the initial point, using the previous results. we obtain the very important relationships

(IL.64)

dp ap
avl, = av|, (11.66)
and
d2p aip
Sl =25 11.67)
avi|, - avi|, (

Thus, not only is the slope of the Hugoniot the same as that of the isentrope, meaning
that the zero-pressure shock velocity is the same as the ultrasonic sound velocity, but their
next derivatives are also the same. One other important relationship is needed, namely,
the sound velocity or the slope of an isentrope, 3P /3V|g, at P # 0 with respect to the
Hugoniot. To find this we will need the therniodynamic Griineisen parameter,

v=V(oP/3E)y . (11.68)

As indicated, ~ 18 assumed to be only a functiocn of volume, and for some applications it
is assumoed to satisfy the relationshlp

1= PoNo - (11.69)

Additional discussion of -y and Cy are glven in later sectlons. What is required is to relate
the energy on the Hugoniot, E4(V), which is determined by the density, to an energy state
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off the Hugoniot. Here we are interested in the velocity of sound, which propagates at
constant entropy, so we need to prescribe an E(V, S) equation of state. We will relate the
difference in energy between these states (at the same density) with the energy calculated
from the difference in pressure and «. From the definition of v (I1.68) we have

Eq —E = (P - P) (%) . (IL70)
This gives, on differentiation,
dE| _ 8E d(V/—y) dPy AP (v |
v, " av|, +(Pu-F)—5——+ v “av)\57) - (IL.71)
We also need the differential of the Hugoniot Eq. (I1.45):
'dE _(Yo-V)dP (Po + Py)
avly 2 dv|, 2 (1L.72)

Equating (I1.71) and (II.72) and soiving for the slope of the isenirope gives

aP| _~q[OE d(V/‘Y) VdPy (Vo—V)dPy , (Po+Pn)
V|~V [av +(Pu—P) R 2 dav T 2 - (1L.73)
After simplifying and using
oE'
W's =-P . (IL.74)
Equation (I1.73), we find from the slope along an isentrope
3P| _ (Vo—V) dPH '1 (Po + Pu) d(V/'v)
avl, = [1 (v) 2 + V( - P)—=—== . (IL75)

It can be seen that when Py = P the first two terms give the slope of the isentrope where
it crosses the Hugoniot. The last term then gives the change in slope for states above or
below the Hugoniot.

As a matter of interest it is appropriate to note the analogs for the velocity of scund
C = -V(aP/aV)'/? (I1.76)

with the velocity of a shock wave Eq. (II.43) and the corresponding equations for the
material velocity on a rarefaction wave Eq. (I1.31) and the material velocity due to a shock
wave Eq. (I1.44).
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III. SUPPLEMENTAL HUGONIOT CALCULATIONS

In this section we will outline several calculational procedures for extending the EOS
to regions off the Hugoniot, mainly by calculating reflected shocks and pressure-release
isentropes. We will also show how other thermodynamic quantities, such as temperature
and entropy, can be calculated, so thzt reasonable estimates of these quantities can be
made. The equa.tiorbxg are also inverted, so that quantities like the Grincisen parameter
or specific heat canjcalculated if sound velocities and/or temperatures have been mea-
sured. Almost all the calculations are done by stepwise integration or iterational methods.
Sometimes both are necessary. This causes no hardships, since one is usually creating
tables or graphs. Temperatures can readily be calculated in flow problems with only a
slight increase in computer time. If appropriate, some examples are given. It should be
kept in mind that gamma and the specific heat usually are considered functions of vclume
ouly, because of our ignorance and theoretical considerations. This restriction does not
have to be imposed on the numerical methods, but the thermodynarnic variables must be
internally consistent.

A. Reflected Shocks and Isentropes

A problem that frequently arises in shock-wave physics is to find the state that a
shock-loaded material goes to when the shock waves passes through it and into a different
material placed on it. To find the solution to this problem one uses the pressure-particle
velocity Hugoniots of the materials of interest. In Fig. III.1 are plotted three Hugoniots
with the center one representing the material through which the shock traverses first. The
Hugoniot of the second material could either lie above or below the first material. Although
there are some objections to the term “shock impedance” the term is often used to describe
states in the pressure-particle velocity plane. Thus the upper curve is said to have a higher
shock ixixpeda.n'.;e than the other two, or that they have a lower shock impedance. The
origin of the term comes from the conservation of moment equation (I1.38), P = PUUp,
where the product p,U, compared to the similar terms pC in ultrasonics. The product

is also used to define stiffness but that term is more appropriately restricted to U, or C
itself.

The materials were in contact before and after the passage of the shock wave. This
means that they have the same particle velocity, and continuity also requires that ihe
pressure in both material at the interface be the same. Since the particle velocity and
pressure at the interface must be the same, a graphical or numerical solution for this
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requirement in the pressure particle-velocity plane yields the new states (see Fig. III.1).
The states in the samples are reached by what are called reflected shocks when the pressure
in the samples are higher, or pressure release states or isentropes when the pressure in the
samples are lower.

To calculate the reflected shock states and isentropic release states, one must use
energy equation, the Hugoniot of the material shocked first, and its Grineisen parameter,
v, defined as

v =V(dP/dE)vy . (IIL.1)

Various forms of the previous equation are used in what has been called the Mie Griineisen
EOS. As defined, v can be used in a general energy equation for relating processes and
eneigies at any point to corresponding values on the Hugoniot, or

E=Ey+ (P-Py)/py . (IL.2)

Reflected shock loci are calculated in the P-V plane. The difference in energy between
a single-shocked state and a double-shocked state is illustrated in Fig. II1.2. Using that
diffezence and the indicated pressure difference, the locus of second shock states can be
calculated by MI.2. The following is the equation for calculating reflected shocks, obtained
by satisfying the energy conditions along the two Hugoniots:

p, = P = (p7)a|(Pu — P1)(Vo ~ V3)/2)
? 1- (p7)2(V1 - Va)/2

(I11.3)

Even though it is known that rigidity effects are present in most shock flow problems,
they are ignored when calculating release states, as they were when making the reflected
shock calculations. In that case release states are assumed to be isentropic and can be
calculated via the thermodynamic law

dE = TdS - PdV (I11.4)

with d§ = 0. Using the nomenclature in Fig. II1.3, the following difference equation can
be obtained to calculate the P-V loci of the isentropes.

_Pu- (p¥)i|P1-1AV/2 + Ey — E;_,]

Pi 1+ (pYhAV/2

(I1L.5)
Using the same nomenclature, a modifled form of the Riemann equation,

AU, = v-AVAP , (I11.6)
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where AU, is the incremental increase in the material velocity, is easily evaluated at the
same time as the PV locus is determined. Although it is difficult to compress solids
isentropically to very high pressure, Eqs. III.5 and III.8 can be solved for incrzasing or
decreasing pressvre conditions.

B. t jots

On occasion it is desirable to calculate the locus of a Hugoniot that was centered
at some other state; perhaps the material was heated or the sample had some porosity.
This can be done in the same manner as calculating reflected shock states for use in
impedance-match calculations. Gamma has been used to calculate the effect of porosity
on the density-pressure loci of sisockzd materials. This was first demonstrated in 1964 [13].
Subsequently, porous materials have been used by severa! experimenters in an attempt to
obtain gamma. With reference to Fig. II1.4, the energy difference at the shocked volume
state V between a Hugoniot based on a crystal density material, V., and one shocked from
a porous state, V,, is shown by the slashed area. The average value of gamma is

5 = V(Po — Px)/[Px(Vx = V) = Po(Vo = V)] . (11L.7)

Here all values are taken along the Hugoniots and the o subscript refers to the originally
porous material. It is assumed here that the specific internal energies of the crystalline
and porous materials are the same. The addition of an energy term in the denominator
allows temperature corrections to be made.

To correct a Hugoniot data set obtained with porous samples, (III.7) is inverted,
giving
Py =P,[¥(Vo — V) +2V])/[4(Vx - V) +2V] . (I11.8)

The Los Alamoe group [12,14] calculated 4 from the Dugdale MacDonald [15] relationship

V (d?}(PV3/3)/dV3\ 1
V= ?( 4(PV3R)av ) "3 (I1L.9)
However, it is common to use the relationship
v = %(pop)? . (I11.10)

There seems to be no justification for using more complicated functional forms at the
present time. Further discussion of the Griineisen parameter will be given later.
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Temperatures are usually not measured in shock-wave experiments, but knowledge
of the temperature of the shock state is of considerable interest. For example, many
rate processes are strongly temperature dependent; studies of the interior of the earth
involve temperature as well as compressibility, and composition and phase boundaries are
best described in the P-T plane. It thus behooves us to discuss methods for calculating
temperature. If temperatures are measured, the equations can be modified so specific heats
can be calculated at least to the uncertainties in the Griineisen parameter. In addition to
the relationships discussed previously, the thermodynamic identity

TdS = C,dT + T(9P/3T)vdV , (IIL.11)

where
(6P/aT)y = Cy(v/V) (I11.12)

is used. Here C, is the specific heat at constant volume. Substituting the value of dE
from the Griineisen equation (I1.87) in the thermodynamic law (I1.46) gives the following
relationship:

TdS = (Vo - V)dP/2 + (P - P,)dV/2 . (IT1.13)

Eliminating TdS from (III.11) and (III.13) above gives the differential equation
dT = (V, — V)dP/2C, + [(P — P,)/2Cy — T(y/V)]dV . (I11.14)

It was shown by Wackerle [16] that although this equation can be integrated in closed form
for some special cases, It is undoubtedly more convenicnt to solve this equation by using
a centered difference equation. One we have used is

_ Tii[1 - P1AV/2] +|(Vo — V)AP + (P - Po)AV]/2C,

1+ AV /2

The origin of the various terms is explained in Fig. II1.5. When using ¢his difference
equation, any form of the Hugoniot, Griineisen parameter, and specific heat, can be used
as lung as they are compatible. If the temperature is assumed known at some point on
the Hugoniot, the previous equatlon can be integrated either up or down in pressure. The
specific heat us~d in temperature calculatlons varies, from a simple constant 3R value to
a value calcula d from the Debye theory with electronic contributions. The iatter term

certainly is very important for metals at high temperatures. If dS = O (isentropes) then
the thermodynamic identity (III.11) becomes

T

(II1.15)

dT = -T(y/V)dV , (I11.16)
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which can be readily integrated:

T="T, exp [ /v T(q/V)dV] . (IIL.17)

Temperatures along isentropes have been calculated with III.17 using initial values along
the P = O isobar. It might appear that doing so would eliminate errors caused by uncer-
tainties in the specific heat. However, these same types of uncertainties are refiected in
the assumption that v is a function of vo'.me only. Equation III.12 has been used, again
with the reservation that the variable is only a function of volume, to calculate isotherms
from isentropes or Hugoniot temperature loci simply because more complex functions are
not justified. The AP term in (III.12) is often described as the thermal pressure.

Equation II1.13 can also be used to calculate the entropy in a similar manner. A
difference equation we have used is

Si = Si_1 + [AP(V, - V) + AV(P - P,)] /2T . (ITL.18)

D. The Method of Mixtures

The need sometimes arises to know the Hugoniot of a material that is A mixture of
other materials whose Hugoniots are known. It would be advantageous if the Hugoniot
of the composite could be calculated rather than measured. We feel that this can be
done reasonably well, at least in some insiances. Before proceeding further we wish to
specify what mixtures should be amenable to calculation. First, the components should
not interact with each other. This would exclude such things as alloys and compounds, for
there is nothing in the simple calculations to be described that can account for changes in
the microstructure or electronic structures that can effect compressibility and other such
things. However, if nothing better can be done, the method could stili be useful. At
least some properties of the new state can be incorporated. The calculatinns are based on
equilibrium thermodynamic conditions, which means that the particle size should be such
that thermal equilibrium can be obtained on the time scale of the experiments. However,
even this may be too restrictive, since the total energy is properly accounted for and

variations in the temperature distributlon will average out through the thermal expansion
of the components.

Mixtures occur frequently in geological materials; rocks are probably the most abun-
dant, and In a sense more of a true mixture without chemical Interactions, as opposed to
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iron-nickel meteorites, in which some alloying occurs. Some minerals such as forsterite and
enstatite, whose chemical formulas may be written as sums of basic oxides, have definite
crystal structures of their own. Their EOS properties at STP, such as density and bulk
moduli, do not correspond to the properties that would be expected for mixing without
chemical or structural reaction. Another type of mixing common in silicates is continuous
substitution of Fe and Mg, e.g., (Mg,Fe)SiO4. One would expect that if the EOS of the
end members were known, it should be possible to predict the EOS for any intermediate
composition of this latter set quite well.

There are obviously many ways to perform a mixing calculation for determining
Hugoniots, all involving some degree of approximation, some because of uncertainties in
temperatures caused primarily by lack of knowledge of some of the thermodynamic prop-
erties. However, we note that if one had a static-isothermal press, and if no reactions took
place, the P-V locus measured should be precisely the same as that calculated if one used
additive volumes. ‘This was the approach used by the Los Alamos group [17], and since
they demonstrated that the procedure did quite well in several tests, that ir the approach
we will use.

In brief, a zero-Kelvin isentrope is calculated for each component in the mixture.
For simplicity, and lack of knowledge, the specific heat and py assumed to be constant.
The density at zero pressure and temperature is first found, which contains a small error
because the specific heat is not constant. The isentropes starting at those densities are
calculated by the difference equation (III.5). The zero-Kelvin isentrope, K, for the mixture

was found from the equations
Vic=)_ mV;(P) (I11.18)

and

Ex = )_mE(P) . (111.19)

In the above, all the quantitles are taken on the appropriate isentrope, and m,; is the
mass fractions of each component. Slmilarly, py and Cy for the mixture required for the
calculations can be determined:

Py = m(pv)s (111.20)

and
Cv =) m(Cui) . (111.21)
If the parameters used in the two previous equatlons are known, they can be Incorporated

in the caiculation rather than estimated. The Hugoniot for the mixture is then calculated
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in a manner similar to that for reflected shocks, using the equation

_ P, - A((E, — E,)]
T 1-py(Ve—-Vo)/2 '

where P, and E, are on the isentrope and E, and V, are the starting conditions for the
new Hugoniot at P = 0. It is to be noted that the V, usea in the previous equation is
that measured on the material of interest. If there are voids in the sample, this procedure
wiil correctly account for them, as in the similar situation where Hugoniots for porous
materials were calculated with Eq. II1.8.

Pu

(111.22)

Several tests of the usefulness of the above procedure were presented. One test
was conducted on a series of commercially available sintered mixtures of Cu with W and
tungsten carbide, and Ag with W, called Elkonites [Morton Co|. The U,-U, Hugoniots
for some of the mixtures are plotted in Fig. II1.6, and the values of P — p are plotted
in Fig. II1.7. It is obvious that the agreement is very good. The downward curvature
seen in the U,-U, plot in the low-pressure regime is caused by voids or porosity. The
percentage composition of these materials can be determined quite well, and in all cases
the computed zero-pressure density was higher than that measured, indicating a small
amount of porosity. The measured density was used for V, in (II1.22), which accounts for
the curvature in the calculated Hugoniot and data plots.

Hugoniot data for two Au-Ge alloys (Fig. II1.8) are also compared with the calculated
Hugoniot. Here the Hugoniot of the Ge end member has a very large density increase,
probably because of shock Induced melting. Again, measured and calculated Hugoniots
are in good agreement. Data for three iron-nickel alloys are also compared (Fig. 111.9),
with similar good agreement. The Hugoniot of the iron used for the calculation was in the
hcp phass and the Hugonlot for the Ni was in the fac phase.

IV. PHASE CHANGES AND HUGONIOTS
A. Shock Wave Stability

During World War II, Bethe [18] wrote a paper on the theory of shock waves in
which he showed that for a shock wave to be stable the sound velocity of the material
must increase. In general, this v ‘uld mean that a P-V EOS would be concave upward.
It is also true that for the shock 1roat to be stable the shock veloclty must incroase with
pressure. This Is probably obvlous, since If the shock velocity decreased with pressure, the
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lower-pressure part of the wave would simply outrun the high-pressure pulse. For a normai
material, d?P/dV? > 0, so we expect that shock waves should be stable. However, if there
is a phase change, regions could exist in the material where the P-V EOS would appear
to be concave downward as indicated in the P-V Plot (Fig. IV.1). Referring to Fig. 1 we
see that for the wave to be stable,

Usz 2Usy . (Iv.1)

If we substitute the P-V shock-velocity relationship, Eq. (I1.41), in Eq. (IV.1) and remem-
ber that the second wave is riding on material moving with a particle veiocity U, we
obtain

Vi[(P2 = Py)/(V1 = V3)]*/? + Upy 2 Voi(Py - Po)/(Vo - V1)]¥/? (Iv.2)
and replacing U, by Eq. (11.42),

Vi!{P3 — P1)/(V1 = Va)]'/* + [(Py = Po)(Vo — V1)]*/? > Vo[(Po - P,)/(Vo —~ V1)]"/?
(IV.3)
On rearranging,
(Pz —P1)/(V1 = Va) 2 (Py - Po)/(Vo - V) . (IV.4)

Thus the slopes in the P-V plane must increase or the shock front will not be stable.

One matcrial known to have an anomalous compression curve is fused quartz. Bridge-
man [19] found that with increasing pressure it became more compressible, that is its P-V
locus is concave downward. From the above analysis, Eq. (IV.4), a nonstable wave should
develop if the materlal is subjected to some type of high-pressure loading. Such behav-
ior can be observed irn fused silicate when subjected to shocks of less than 300-kb. The
initial sound velocity is ~68 km/s but it decreases with pressure thus a wave is generated
in which the lead moves at 6 km/s but the higher pressure component of the wave moves
at ~5 km/s. Thus, the further the wave travels the more smeared out it becomes. This
example of a nonstable shock wave is illustrated In Fig. IV.2. Fused quartz also has a phase
change beginning at ~100 kb so there is additional structure in the wave front caused by a
transition. It takes a pressure of about 300 kb before a stable shock wave develops but this
still does not overdrive the anomalous compression reglon. The type of Hugoniots that

would result in a particle veloclty time record shown in the previous figure is sketched in
Fig. IV.3.

The most llkely type of transitlon to be observed in shock-wave studies would be
a phase change with an Increase in denslty. Because of varlous thermodynamic effects
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outlined earlier, the Hugoniot will not coincide with an isotherm where the phase change
is manifested as an isobar in the P-V plane. In addition to the thermal effects, there are
also nonequilibrium conditions and rate processes often present. The effect of transitions
and other considerations on the structure of the shock front is illust-ated in the figures. The
solid curves in the P-V plane are the Hugoniot loci for a material that has an equilibrium
EOS shown by solid lines. In the first example (Fig. IV.4) the onset of the phase change
is drawn higher than that of the equilibrium. Two reasons for this are: (1) the phase
change might be quite slow relative to the time scale used in the shock-wave experiments,
hence requiring some amount of overdrive to initiate it; or {2) if the slope of the phase
line is positive, the increase in temnrerature in the shock wave would require that a higher
pressure be reached before the Hugoniot intersects the phase line. The Hugoniot transition
point could actually lie below the isotherm for at least two reasons: (1) a rather large shear
stress is usually induced in shock waves, which could enhance the phase change relative to
a pure hydrostatic stress, which means that the material was not in thermal equilibrium.
Or, if the slope of the phase line is negative, the shock wave will cross the phase line at a
lower pressure relative to the cold isotherm. In the next figure (IV.5) are drawn a P-V plot
where three shock suates are indicated: (1) the onset of the transition, (2) the pressure of
the shocked state, and (3) the intersection of the ray from 0 to 1 and the Hugoniot. The
second column of figures shows the type of wave profiles that might be observed, and the
third column the type of U,-U, Hugonlots that could result from these phase changes. The
region between points 2 and 3 in the U,-U, Hugoniot in Figs. IV.3 and IV .4 is drawn with
point 2 considerably lower than 3 and with considerable curvature, indicating that the
transition under shock conditions is close to equilibrium. In some cases the region between
1 and 3 might contain sections with concave-downward curvature. When this occurs, and
the pressure lies below the point 0 — 3 ray, a two-wave structure will occur but the wave
profile will show dispersion and curvature. This would indicate that the transition has
not gone to equilibrium. Three examples of this are illustrated on Fig. I'V.5. If point 2
lies above the 0 — 3 ray, a two-wave structure will not exist. However, if there is some
downward curvature, the resulting wave profile will show a sharp rise followed by a rounded
dispersive top whose actual shape, of course, is related to the shape of the P-V curve. If
the region between 2 and 3 is concave upward, sharp shocks can develop. This would be
the case for shock pressures lower than indlcated. For thesc cases the U,-U, Hugoniot
can show a gradual incrcase from 1 to 3. When shock-velocity measuring techniques that
detect only the arrival of the shock front are used, the region between points 1 and 3 will
appear as a region of constant shock velocliy.
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B. Phase Lines, P-V curves and U,-U, Hugoniote

A first-order phase change is characterized by the slope, dP/dT, of the phase line,
which is usually given by

dP/dT = AS/AV = AH/TAV (IV..5)

where AS and AV indicate the difference in entropy and volume between the initial and
final states. In Fig. IV.6 are sketched two systems where dP /dT is positive. In the first set,
the Hugoniot is centered in the low-temperature/high-densi.y phase. This is the type of
behavior to be expected for normal melting. As can be seen, there is realiy very little change
in slope going through the mixed phase region, and not nec;uarily much change from region
I to II. For this region it appears that normal melting would be quite difficult to detect
from Hugoniot measurementc, because the thermodynamic properties of the material are
so similar in both phases. As indicated, for melting, dH/dV is nearly continuous. These
drawings show that the temperature must increase on the Hugoniot as i crosses the mixed
phase region, but the temperature will increase at a lower rate. In this and the next figure,
the curves are drawn for assumed equilibrium situations. It is reasonable to expect that
for a normal material the Hugoniot would cross the melting curve, because with increasing
pressure the teinperature along the Hugoniot increases more rapidly. In the second set
of figures (IV.6) the Hugoniot is centered in the low-pressure/low-density phase, and, as
indicated, a two-wave structure is possible, depending on how the shock wave goes through
the mixed-phase region. The graphite-diamond transformation would be of this type. In
both of the previous examples the temperature must Increase.

Figure IV.7 illustrates the case where dP/dT is negative. Here the Hugoniot must
originate in the low-density phase if it is to cross the phase line. A two wave system can
develop, depending on the caveats discussed previously. For this type of transition we
see that the temperature must decrease If the reaction goes to equilibrium conditions. If
dP/dT < O we note from (Fig. IV.5) that the entropy must decrease, and since the second
shock must increase the entropy, we conclude that there is no way that equilibrium states
can be observed in the shock-wave expeiiments with these conditions. The a-¢ transition
in iron is representative of this type of transformation. However, the onset of the transition
can be at an equilibrium state.

It should be noted that even though the final states in a shock-induced transition are
not at equilibrium, it is still quite possible to detect the beginning of the transition with
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shock-arrival measurements, since even if only a small amount of material is transformed
it can give rise to a two-wave structure that can be observed readily.

We have indicated that some first-order phase changes result only in a change in slope
on the U,-U, Hugoniot. A similar behavior would be observed if the material only under-
goes a second-order phase change, e.g., a change in compressibility. This type of behavior
has been observed in aliphatic polymers, where it is believed dissociation is occurring [20].

Although it is not ordinarily considered a phase change, the relaxation resulting from
a one-dimensional compression to a hydrodynamical state will also cause the formation of
a two-wave structure in shock fronts. For weak shocks in materials with rigidity, the shock
front separates into two waves, the first traveling at the longitudinal sound velocity and
the second at the bulk wave velocity [14]. The amplitude of the first wave is called the
Hugoniot elastic limit, HEL, which can be quite large in some materials with large yield
strengths. If the amplitude of this elastic precursor is great enough, first-shock-arrival mea-
suring techniques often rdetect it. Often the records appear to have abnormally high-shock
velocities. Such data r.an usually be recognized and treated appropriately. As expected,
Al; O3 (sapphire) has a huge HEL, which causes considerable errors when making Hugo-
niot measurements unless proper precautions are taken. If the shock-wave data indicate
a phase change, several features can be used to decide whether the transition is due to a
phase change or to elastic-plastic flow. If the high-pressure U,-U,, data extrapolate to a
zero-pressure value substantially below the bulk sound velocity, then it must be concluded
that a phase change exists. If the data extrapolate to a velocity higher than the zero-
pressure sound velocity, a transition is indicated, but most likely to a different type. Such
behavior would be compatible with a second-order phase change as a result of which the
material has become more compressible. Ordinarily the high-pressure phase is less com-
pressible, but in some compounds, if low-pressure bonds are destroyed, the material can
indeed become more compressible. Even though the high-pressure data extrapolate to the
zero-pressure bulk sound velocity, low-pressure phase changes can exist. For these cases,
and tnose for which the data do not go to high enough pressure to resolve the problem
through the previous considerations, it is stil' possible to decide whether or not a transi-
tion exists. To do this, first examine the flat segment of the U,-U, Hugoniot. If this does
not occur near or above the measured longitudinal wave velocity, nne is not observing the
effect of a two-wave structure due to elastic-p'astic flow. If the shock velocity happens to
be in agreement with the longitudinal wave velocity, one must then check to ace if there
are anv lower-pressure data that extrapolate toward the bulk sound velocity. If so, it must
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be concluded that agreement with the longitudinal velocity is purely coincidentl, because
if it were indeed due to an elastic wave, the low-pressure data would have to extrapolate
to the zero-pressure longitudinal value. It should be remembered that if any of the last
two conditions are satisfied, the existence of a prase change is established. Two necessary
conditions for establishing that the wave structure is due to an elastic wave are that the
low-pressure data extrapolate to the longitudinal sound speed or that the flat region be at
or slightly higher than the longitudinal sound speed and also that the high-pressure data
extrapolate reasonably well to the bulk sound velocity.

It is sometimes desirable to estimate the high-pressure EOS of some material that
has undergone a transition in terms of its zero-pressure parameters, or the Hugoniot EOS
of the material if it were shocked from its metastable state. From examination of the
diagrams of the schematics of the effacts of phase changes, Figs. IV.6 and IV.7, we see
that it is obviously incorrect to extrapolate the high-pressure U,-U;, Hugoniot data down
to zero pressure, because this results in gero-pressure sound velccities or compressibilities
that are often lower than those of the original material. A phase change, with an increase
in density. should most likely also have an increase in its bulk modulus. More reasonable
results are obtained if the extrapclation is done in the P-p plane, but even here the ex-
trapolation is quite subjective because the rate of change of curvature must be estimated.
A3 wis discussed earlier, the linear U,-U;, Hugoniot is the logical one to be specified for
a normal material. A procedure for finding this best Hugoniot was first described in 1963
in determinir.g the EOS of stishovite (21], and later in more detail [22] for some rocks.
It is an iterative method for finding a p,, C,, and S for the metastable Hugoniot, ‘vhich,
when used with certain initial conditions, makes it possible to calculate or reproduce the
original Hugoniot data. The schematic in Fig. IV.8 illustrates the conditions that exist
in the transition region and that must be satisfied to determine the difference in internal
encrgy of the two states at P = 0. The procedure is first to calculate all the thermo-
dynamic quantities T, S, E, and the Gibbs free energy, G, at the P-V of the transition
(Point 1). This requires that the Griineisen parameter and specific heat and the slope of
the phase line be known or estimatad. These values must also be known or estimated for
the metastable phase, and while they need not be the same, exce} t for the slope of the P-T
phase line, they are usually assumed to be. An isentrope is calculated from an assumed
metastable Hugoniot that satisfies the condition that the temperature at 2S is the same
as that at Point 1. This “etermines AV and hence AS. Since the free energy must be the
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same on the phase line (G, = G3), the energy difference, Eop — EoB, can be found. With
this a Hugoniot centered at the original state can be calculated from the assumed or trial
Hugoniot. The somewhat familiar form of the working equation for doing this is

Pg = Pg(l — »(Vos — V)/2] + p7|Eoa — EoB]
1-p7(Voa — V)/2

This is essentially (III.8) with an additional term to account for the difference in the
internal energy of the two states. This P-V Hugoniot can then be transformed to a U,.Up
Hugoniot by the application of E¢s. (11.41) and (I1.42). The values of U}, on the calculated
Hugoniot are found at the shock veiocity of the data points. The minimizing procedure
is arbitrary, but usually C, and S are held fixed and the density po is found such that
LAU, = 0. This variation tends to move the caiculated U,-U, Hugoniots more or less
parallel to themselves (Fig. IV.9). C, is usually varied next and the I]U;] or LU} is
minimized. This variation tends to rotute the calculated Ug-Up trial curves (Fig. IV.10).
Finally S is varied, which tends to change the curvature. This last minimization is the
least sensitive of all (Fig. IV.11). If any parameter or parameters are known, they can be
specified, and the resulting solution is cailed restrained. If the density of the high-pressure
phase is measured from shock recovered or synthesized samples, that can be used and the
bulk modulus will be much better consirained. If enough material can be obtained to
measure both the density and the sound speed, then the determination of the siope, S,
becomes meaningful.

(IV..6)

D. Elastic-Plastic FI

Elastic-plastic flow is only of secondary interest to the subject being addressed in this
lecture. But by the nature of our experiments it is almost always with us. In the plate-
impact experiments, the initial micro- copic motion must be one-dimensional on both the
macro and micro scale. If the material is isotropic, the shock wave must travel at a velocity
governed by a one-dimensional EOS. This means that the shock-wave velocity would be
determined by the velocity associated with the longitudinal sound velocity. The meaning
of this is illustrated in Fig. IV.13, where we Lave drawn two hypothetical linear U,-U,
EOSs. The one-dimensional nature of the fiow can only last for as long as it takes for
the material to relax to or toward the lower equilibrium EOS. For most materials, this
relaxation process begins almost Instantly. Exceptions of sori.e inter. st are materials like
graphite when shocked perpendicular to the basal planes. Here the forces between planes
are so weak that this is simply the easy mode of compression. Even though relaxation
usually occurs immediately, there are many instances in which the longitudinal states
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do not reach equilibrium. How closely the approach equilibrium and how the materials
relax are governad by its elastic properties. These features are readily observable by
several techniques in low-pressure shock studies. The shear modulus is the dominant
elastic parameter governing the relaxation flow. What must be considered is that for
an ordinary material the one-dimensional macroscopic flow produces large shear stresses,
which must eventually result in flow by slip on the large scale and which in turn are formed
by dislocations on the micro scale.

Some additional features in Fig. IV.13 deserve comment. The three-dimensional equi-
librium and  experimental U,-U, curves have been drawn with
straight lines because of experimental evidence. The one-dimensional longitudinal curve
and the transverse curve have both been drawn with a downward curvature. The shape
of the transverse velocity curve is due to the shear modulus, and it i shown increasing
originally because static measurements have shown that the shear modulus increases with
pressure. However, because of the rapidly increasing temperatures along the Hugoniot the
shear moduli will decrease, so that curve has been drawn with a downward curvature. If
the material melts on the Hugoniot, the shear velocity will become zero. At present there
is evidence that the shear velocity does not smoothly approach zero, but disappears rather
abruptly. When that happens the one-dimensional curve becomes the equilibrium curve.
No evidence exists to show how close the experimental and equilibrium curves are at high
pressure. Most likely the deviatoric stress, or the separation, is comparable to that ob-
served at low pressures. This would imply that it would only be a small perceztage of the
total stress. The Hugoniot states calculated from the conservation equations are correct,
even if the states are not at the hydrodynamic equilibrium condition; it simply means we
do not know precisely what has been measured.

V. EXPERIMENTAL TECHNIQUES

Many techniques have been used for studying shock-wave phenomena. In this section
we vrill describe briefly some experimentation related to these lectures. When appropriate,
an example or two of typical results will be given. Many techniques have been invented
or developed to study shock waves. These range from the early systems, which detected
arrival times only, to devices that make it poseible to make time-resolved pressure and
inaterial velocity measurements to a few nanoseconds. We will limit this discussion to a
few relatively simple methods that determine only arrival times, from which average shock

velocities or material velocitles are calculated; some temperature measurements; some
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optical methcds for determining sound velocities at high pressure; and some recovery
systems. The simple X-T measurements are included because they form the data base
on which most of the high-pressure EOS is based. It should be noted that this also
includes most static high-pressure data, since their calibrations are based on shock-wave
data. Temperature measurements are important since they are the on'y way we are going
to learn about specific heats at extremely high temperatures and pressures where other
quantum effects come into play. These effects can be seen in the increasingly sophisticated
band structure calculations, and experimental verification is needed. The sound-velocity
measurements have given us the opportunity to determine both the melting point of solids
on the Hugoniot and the Griineissen parameter. Both of these quantities are required for
a more complete understanding of nature. Some very elegant and sophisticated techniques
have been omitted simply because they have not been used to address the three major
problems: accurate Hugoniot, temperature, and sound velocity measurernents. The other
techniques have primarily addressed the study of elastic-plastic flow and other problems
at relatively low pressures.

Shock waves were first used to obtain EOS data for solids during World War II. In
1945 a program was initiated at Los Alamos National Laboratory (LANL) to determine
the EOS by shock waves using pin contactors and oscilloscopes. Shock velocities were
determined by shock arrival times from pins located in holes in the sample and the material
velocity, Ug,, by pins off the surface. To our knowledge, the first report of that work
was published in 1955 [3]. By using various high explosives (HE) in contact with metal
plates, pressures to about 500 kbar were attained in dense materials like copper. At
that time Professor Bridgman'’s upper limit was about 100 Kb. The ability to fabricate
high quality explosive lenses witk fast and slow detonating components made it possible
to generate relatively large plane waves that could be used to obtain shock-wave data on
several materials simultaneously. Several such lens systems have been developed by various
laboratories, including air lenszes, where the slow component is an accelerated metal plate
whose velocity is much slower than the detonation velocity of the high explosive. In the
mid-1950s, HE systems were used to accelerate metal plates, which were then used to
generate even higher pressures. Figure V.1 is a drawing of an HE system used in the
1950s. Black powder guns have been used as well as gas-propelled guns. With these only
modest pressure could be attained, but the small gas guns could be used in a laboratory on
a college campus if desired. With the advent of the space age, large two-stage guns were
developed to study re-entry ballistics, which were capable of accelerating small projectiles
(originally spheres) to velocities in excess of 7 km/s. In 1966 Jones, Isbell, and Maiden
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(23] adapted one of these guns for doing EOS work. Several of these types of guns are
currently being used. The two-stage gun at LANL consists of a pump tube ~15-m long and
100 mm in diameter, an accelerating reservoir, the launch tube, ~10-m long and ~30 mm
in diameter, and an impact chamber. The pump tube is filled with hydrogen gas, which
is compressed by a projectile made of lead and plastic launched by relatively slow-burning
powder in the magazine. The two barrels are coupled with what is called an accelerating
reservoir, where the hydrogen gas is compressed and then accelerates a plastic sabot with a
metal disc on it. Spherical implosion systems can, of course, reach much higher pressures,
but they are very expensive and not as convenient to use. It has been surmised that the
Soviets used these in their early (9-11] 100-GPa experiments. Experiments have been done
using the energy from nuclear explosives, which have generated shock pressures in excess
of 500 GPa. Unfortunately, no measurement of the material velocity were made in those
experiments; only relative shock velocities. Because of this, no further mention will be
made of them.

\. Electrical Pi

Probably the first shock-velocity detecting systems used electrical shorting pins
(3,5,6]. Electrical signals were generated when metal pins were shorted by shock-accelerated
metal ylates. These signals could be displayed on oscilloscopes, a few for each sweep, or
on rasters where many signals could also be recorded with good time resolutions but for
longer times. The signals could be used to detect time differences between shocked samples
of different thicknesses. These then give a straightforward method for determining siiock
velocity. In these experiments and others, many pins must be dedicated to establish the
shape of the shock-wave arrival. By placing pins kncwn distances away from the free or
front surface of a shock-loaded metal plate, the free surface velocity, Uy, could be de-
termined. In the early 1950s it was standard practice to assume that Ug was twice the
shock particle velocity in determining Hugoniot parameters. By seiting the many pins
with different spacings and accurately measuring their posltion, a replica of the shape of
the shock-wave could be determined from the derivative of the data. Minshall [5], who
was extremely meticulous in assembling and measuring these target assemblies, detected
the elastic wave in shocked iron. Later, employing similar techniques, he and colleagues
[24] presented data (Fig. V.2) showing that in shocked iron there was an additional wave
propagating at 13 GPa. They also described the necessary unfolding required for reducing
free-surface x-t data to P-V states in a multiwave system. The signals from more than
60 pins were recorded on oscilloscopes in this experiment, which implies that considerable
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effort was expended in performing this measurement. Some of the optical experiments to
be described later eliminate much of this work. In 1964 R. Dick began using shorting pins
to measure the EOS of liquids [25-26]. The experimental configuration he employed for
measuring shock velocities in liquid N3 [25] is shown in Fig. V.3 and the data in V 4.

Shorting pins are still being used as shock arrivai detectors on the high-velocity
two-stage guns, e.g., Morgan, 1974 [27] and Mitchell and Nellis, 1981 [28,29]. In these
experiments the diameter of the target is fairly small (20-25 mm) so that only ten or so
pins are used, usually detecting shock arrival at two thicknesses at different radi (Fig. V.5).
This is sufficient to determine projectile tilt. Bow is essentially determined by a pin at the
center. By use of high-quality coaxial cable delay lines, the time interval between signals
can be made quite small and recorded with fast-sweeping oscilloscopes, which reduces
reading errors. The accuracy in determining shock velocity is probably about one percent.
However, the projectile velocity can be determined to ~0.1 percent, since the projectile’s
transit time can be measured over a long distance (0.2-0.3 m). Various detectors have been
used to measure the impactor velocity, including interrupted laser light, flash x-rays, and
magnetic pickup coils. This is a major advantage of using these guns as opposed to high
explosive systems. Records for varlous diagnostics are shown in Fig. V.6 for an experiment
on the gun.

B. Flash Gap Technique

Almost all the optical techniques used to study shock-wave phenomena rely on the
use of a sweeping image or smear camera. Scmewhere in the camera, a rotating mirror in
the optical path causes the image to move across the film plane. We do not know when
the first smear camera was constructed, but their origin undoubtedly goes back to around
1850, when rotating mirrors were used to determine the velocity of light. By World War I
many sweeping image cameras were used with writing speeds of a few mm/us. This was
soon increased to almost 10 mm/us, and finally with the advent of beryllium mirrors, to
about 20 mm/us. Electro-optical devices available now have writing speed capabilities
that far exceed ordinarily shock-wave diagnostic requirements.

The flash-gap type of experiment first described by Walsh and Christian (4] has prob-
ably been used more than any other te:hnique to obtain Hugoniot data. The principle of
its operation is that strongly shocked gases emit radiation. Walsh put Plexiglas blocks
with spaces approximately 0.1 mm over different areas of the target and viewed the radia-
tion through a set of slits. When the free surface of the naterial traverses the small gaps,
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the shocked gas radiates. This radiation is sometimes observed, depending on the width
of the slit and other things, but it is much weaker than the light emitted when the gas
shock is reflected back from the plexiglas window. This burst of light is quite short but
it is long and bright enough to expose the film. The light is extinguished or the plexiglas
becomes opaque, so the camera records an image approximately the width of the slit as
if it were taken instantaneously. Details of some flash-gap systems are shown in Fig. V.7.
The system as described is used almost exclusively for measuring discrete time intervals.
Many modifications of the target assembly exist.

C. Standar

The definition of the word standard is rather nebulous. In general, any material
that can be used as a basis for determining the EOS of other materials is in principle a
standard. For the present discussion we are being slightly more restrictive in that we will
consider a material a standard only if its EOS has been determined in some manner that
does not require the use of the EOS of some other material.

It has long been recognized that Hugoniot data could be obtained by simultaneously
measuring the impact velocity of a rapidly moving plate and the subsequent shock velocity
induced in a stationary plate. If the driver plate and target plate are made of the same
material and are in the same thermodynamic state, then the symmetry of the collision
requires not only that the pressure be the same in the driver and in the target plate but
also that the particle or material velocity behind the shock wave be exactly one-half the
driver velocity. When using gun devices the projectile velocity can be measured with
very good precision by monitoring its free-flight motion over relatively long distances by
electronic pins or other s1itable devices. This has been done at LANL, Caltech and LLNL,
for example, using two-stage gun devices. However, the bulk of the experimental data
obtained here has been obtained using explosively accelerated driver plates. Unfortunately
it is more difficult to make accurate measurement of the driver plate velocity, Up. The
biggest difficulty is due to the fact that the driver plates are not moving at constant velocity
at the tiine of impact, which means that the velocity must be determined at some position,
over a very short interval of motion. Pin techniques have also been used successfully in
explosive systems. However, for standards developed at LANL we have used a sweeping
image camera to record shock-wave arrival by the flash-gap technique described earlier.

The shock velocity was determined in the usual way by measuring shock wave arrival
times at different levels In the target plate. In order to ciicumvent the fabrication diffi-
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culties encountered in making precise velocity measurements of the driver plate directly, a
small groove was machined in the impact side of the target plate, which allows a differen-
tial measurement of the shock-wave velocity and driver-plate velocity when the shock-wave
arrival was observed over a plane area from the free surface direction.

Details of the assembly can be seen in Fig. V.8. The upper part of the figure shows
the arrangement of the plastic flash blocks which in effect gave four independent sets of
U,-Up data points. The left-hand side of the assembly was used to measure the shock
velocity and the other side the driver velocity. Each set of blocks was viewed through four
or five slits. The cross-sectional views below are designs used in different pressure regions.
The first two designs are for the low-pressure re; itne; the upper one has the Up groove
in the correct position. At higher preasure the grooves are not as readily pinched off and
can be made as deep as the target plate thickness allows. For the high-pressure shots the
target plate thickness is limited by the thin drivers (0.9 mm) used to reach high velocity.

A resulting photographic record is shown in Fig. V.9. This was a relatively low-
pressure shot and the uppermost cross-sectional design was used. In this record, time
increases downward; hence, the early traces on the left-hand side represent the shock-wave
arrival at the bottom of the narrow groove. The corresponding reference traces establish
the wave arrival at the top of the plate. Since the flash blocks on the right-hand side were
at a lower level, the reference traces for the Up measurements arrived earlier. The offsets
represent the difference in the driver-shock transit times through the small gap machined
in the bottom of the plate.

As simple as such a system appears to be, considerable care must be used in choosing
the correct groove depths so that optimum precision can be obtained. In those experiments
the widtk. and lateral location of the grooves were always the same. In low-pressure shocks,
the Up traces are pinched off by the sidewise rarefactions caused by the shock wave,
which runs considerably ahead of the projectile. Thus, the driver velocity can only be
measured over a run of about 1 mm. Data for several materials were reported in Kinslow's
Hypervelocity Impact Phenomena book. Linear fits of the data were adequate for all except
iron, where a small amount of curvature or a slight break in the curve can be observed.
This lack of linearity has been observed in other materials that have undergone a phase
change. In iron it was thought that the curvature or change in slope could be due to
additional phase changes, either the hcp — fcc transition, the solid-liquid transition, or
both. These techniques are not capable of resolving this problem. The zero-pressure sound
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velocity data measured here were not used in the least-squares fits. The resulting U,-U,
and P-U;, Hugoniots are shown in Figs. V.10 and V.11.

At least two other materials qualify as standards, Pt and Ta. Symmetrical impact
experiments were performed with two-stage gun experiments both at LANL and LLNL by
Morgan [28] and Mitchell and Nellis [30).

D. Impedance Match Solution

Although much data have been obtained using symmetrical impacts, which includes
all those materials we consider to be primary high-pressure shock-wave standards, most
data have been obtained using the shock impedance technique developed by Walsh et al.
[1955]. With this method relatively small samples of the material being studied are placed
on a flat plate, often called the standard or the base plate. Since the particl: velocity
and pressure at the standard-sample interface must be the same, a graphical or numerical
solution for this requirement in the pressure-particle velocity plane yields the necessary
values. This establishes the pressure and particle velocity of the other samples. (see
Fig. V.12). To calculate the reflected shock states and isentropic release states, one must
use the calculations outlined earlier. The impedance match solutions are done in the P-U,
plane, but the cross curves are cticulated in the P-V plane, It is known that rigidity effects
are present in these shocked conditions, but they are ignired now as they were then in
making the impedance match solutions. In which case release states are assumed to be
isentropic (constant entropy, S) and can be calculated via the methods outlined earlier. In
the majority of the measurements the shock velocity was measured through two samples
of the standard to establish the shock strength in the standard. A drawing of a typical
assembly is shown in Fig. V.13 and an enlargement of a record in Fig. V.14.

In the previous sectlou the experiments to determine standards and some results
were presented. However, when any material is used as standards, some form of the
Grineisen function must be used to calculate reflected shocks and rarefaction waves so
that the impedance match technique can be used to obtain Hugoniots of other materials
as described in this sectlon. A necessary but not sufficlent condition for thelr adequacy
is that we should be able to reproduce the Hugoniots of the others when one is used as
a standard in the impedance match system. In the work reported in Kinslew [17], five
materials were considered as standards. These were all cross checked as descrlbed above.
The results of three of thosc cross checks, using the standards most frequently employed,
Cu, 2024 Al, and Fe, are reproduced In Figs. V.15-V.17.
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These good results do not preclude the possibility that the EOS of all of these ma-
terials contain some type of systematic error. One possible source of error is the rigidity
of the materials. Until shock heating melts the material, rigidity effects will be present.
It is not known how far the actual states on the Hugoniot are away from equilibrium, or
what effect this unknown deviatoric stress will have on the reshock and release states of
the standards.

E. Interferometry Methods

The frst interferometer used in shock-wave studies was a “Michelson interferometer,”
MI, developed by Barker and Hollenbach in 1965 [31]. This instrument had a practical
velocity limit of 0.1 km/s, because the number of recorded fringes was proportional to
interface displacement. To extend the velocity range, they [32] developed the “velocity in-
terferometer,” VI. For this interferometer the recorded fringes were directly proportional to
the interface velocity. Both the MI and the VI required spectrally reflecting surfaces. This
criterion limited the upper velocity range of the VI because there is usually substantial sur-
face degradation at pressures exceeding 10 GPa. Phase changes can also influence surface
integrity. To circumvent the problem of surface degradation upon shock loading, Barker
and Hollenbach in 1972 developed the VISAR [32], which is their acronym for “Velocity
Interferometer System for Any Reflector” (Fig. V.18). In a VISAR the reflecting surfaces
can be either spectral or diffuse. However, for most applications the surfaces are initially
reported to be diffused reflectors to minlmige reflectivity changes during shock-wave ex-
periments. A VISAR modificatlon developed by Hemsing in 1979 uses all four quadrature
signals rather than just the two used in the orlginal design [33]. This modification has
resulted in substantial improveiuents in both data acquisition and data analysis. In a typ-
ical VISAR experiment a transparent window with a refiecting coating is put on the front
surface of the sample being investigated. This helps maintain surfuce quality and pressure.
Three windows commonly used are sapphire, LIF, and PMMA. It is expected that all these
windows would themselves radiate at some pressure, and if so they would also become ab-
sorbers. Most likely these windows are absorbing, but not enough to quench the intense
monochromatic radiation from the laser. Interferometers have been used Increasingly for
work in geophysics, especlally to study the response of crustal minerals to shock-induced

impacts [34]. Figure V.19 is an exaniple of the result of a VISAR experlment to study the
shock-wave structure.

F. Ternperature Measurementa
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We have shown in Sec. III how to calculate temperatures along the Hugoniots. In
general, the specific heat, C,, and the Grineisen parameter, ~, are required to do this, in
addition to the measured Hugoniot. While there are usually fairly good theoretical reasc..s
for choosing values for these parameters, it would increase our knowledge considerably if
the temperature could be measured behind the shock front and these parameters derived.
Of course the effect v and C, would have to be separated. This can be done because there
are other types of experiments in which « can be obtained.

Temperature measurements on shocked transparent materials was begun by the So-
viets by Kormer, Sinitsyn, Kirillov, and Urlin [35] in 1965 on some alkali halides. This
work was done with two-color pyrometry. They observed that the intensity of the radiation
emanating from the shock front rose very slowly, implying that the shocked material was
not optically opaque. Current measurements fortunately show that the onset of radiation
can be quite steep (a few ns) for many materials. Others performed additional radiation
measurements. In 1968 Kirillov, Kormer, and Sinitzyn [36), studied ionic crystals at some
what lower pressures and reported that the inferred temperatures were much higher than
could be accounted for on the basic of equilibrium thermodynamics. They estimated that
the thermal energy imparted by the shock wave was only about a fifth of that required
to give the apparent thermal radiation. They proposed that plastic deformation created
a large number of free electrons that only slowly came into equilibrium with the lattice.
Later, 1969, Kormer et al. [37] reported on non-equilibrium temperatures in ionic crystals
measured pho: graphically by a method used by Model in 1957 for shocked gases. These
ware very high pressure experiments. Zcl'dovich in 1968 [38] proposed that there was a
layer of nonequilibrium electrons behind the density discontinuity that comipletely screened
the radiatin from the electrons in equilibrium with the lattice. In the alkali halides it ap-
pears theru is a limited pressure range where thermodynamic properties can be measured.
An increase in interest seemed to occur at the end of the 1970s. Lyzenga and Ahrens [39)
described a six-channel optical pyrometer, (Fig. V.20), and they reported some data on
SiO; on Mg3SiO4 in 1980 (40]. They calibrated with a tungsten filament and fitted the
results with a Planck’s distribution (Fig. V.21). If the material has a constant emissiv-
ity as a function of wave length, then a value for the average emissivity can be obtained
when fitting the data to the Planck radiation function. However, if it is not constant the
radiation curve becomes distorted and an Incoriect temperature inferred. More recently
Lyzenga and Ahrens and Mitchell presented data on SiO; (Fig. V.22).

In 1980, Suquira, Kondo, and Sawaoka [41] described their optical pyrometer, which
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used a holographic grating to disperse the radiation on a multichannel analyzer with zilicon-
intensified targets. A similar system was used by Kondo and Ahrens [47]. A record of tke
spectra from shocked calcite they measured is reproduced in Fig. V.23. The detector had
490 channels, which were sampled in groups of 10. The system relies on gating circuits to
sample the radiation over the correct time interval. If the radiation is not uniform over
this interval some reservations should be made about its assumed accuracy. They showed a
record of radiation intensity against time in which the ligat intensity was very nonuniform.

We have phctographically determined brightness temperatures for shocked SiO; over
a broad spectral range (~400-700 mm) by simultaneously recording the radiation from
shocked SiO; and the radiation from detonated nitromethane. The radiation from the
nitromethane and SiO3 were viewed through a set of slits of different widths (Fig. V.24) so
that the relative intensities could be compared (Fig. V.25) and the temperature of quartz
determined from known tempereture of the nitromethane and Planck’s radiation law. This
technique has the nice feature in that absolute radiation levels need not be determined,
only the relative radiation of the unknown and the standard. A disadvantage is that it
must be assumed that both the standard and unknown radiate like a black body. The
data plot (Fig. V.26) shows the effect of a previously unobserved phase change. The data
also indicate that the specific heat is substantially different in the two phases. Because
the crystal quartz and fused quariz data lie on the same curves it is concluded that the
radiation is solely due to the internal energy of the SiO3, sincs the fused quartz and crystal
quartz are not a! the same pressure-density states.

Up to the present time, temperature measurements were restricted to transparent
materials. This more or less precluded measuring the shock temperature of mnst ele-
ments. Recently, Bass, Svendsen, and Ahrens [42] reported temperatures on shocked iron.
They measured the radiatlon from the iron through a sapphire window using the techniques
described earlier (Figs. V.20-V.22). The temperatures derived are dependent on the trans-
mission of the sapphire and the relative thermal diffusivitiss of the sapphire window and
the opaque sumple. Although the sapphire appears to be a guod window, neither the iron
or sapphire thermal diffusion coefficlents are well known. Extraneous radiatlon from the
interface adds further difficulties to these measurements. Efforts to measure the thermal
diffusion in shocked materials has begun, and it is hoped that temperature measurements
on opaque materlals can be made with less .acertalnty.

G, Experimental Techniques Using Shock Emitted Radiation
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Many transparent materials radiate like a black body. The radiation from these
shocked transparent materials can provide an extremely sensitive method of lookiug for
small changes in pressure. We have utilized this feature for detecting rarefaction waves in
both transparent and nontransparent materials [43]. The standard technique of impacting
a target plate with a relatively thin (a factor of four or so) impactor or driver was used.
By using proper thickness ratios, the shock induced in the target will be overtaken by
the rarefaction from the back side of the impactor. We have attempted toc measure the
rarefaction overtaking velocity with some of the in situ gauges available, but when the
shock pressures were sufficiently high for the results to be interesting, our gauges failed.
For nontransparent materials one can usually make the driver and target of the same
materials, which is usually the preferred arrangement. For these materials a transparent
material, called the analyzer, that radiates like a black body is put on the front surface
of the target plate. This plate has areas of different thicknesses, like a step wedge. It can
be made of discrete pieces of different thicknesses. When the shock reaches the analyzer
it radiates at constant amplitude until the rarefaction wave overtakes it and degrades the
pressure, which lowers the radiation intensity. The radiation is viewed through a small hole,
~1 mm in diameter, by the erd of a fiber-optic light pipe with a diameter of 0.6 mm, about
20 mm from it. Most scattered light is eliminated by a pair of baffies in between. The light
pipes transmit the radiation into PM tubes whose output is recorded on Tektronix 485s.
The tubes have Beck’s [44] voltage divider circuits, which have rise times of <1 ns. The
x-t plot (Fig. V.27), althougli idealized, is typical for a strong shock in aluminum. Only
the lead characteristics of the release v 1 are drawn, which here represents the elastic
wave in the target and a bulk wave 1n a liquid analyzer. For materials with elastic-plastic
flow the x-t diagram can become quite complicated, and if the amplitude of the elastic
release wave is large, it becomes difficult to ascertain where the bulk release wave comes
in. Some help in making that detcrmination is obtained by having the elastic overtake
position occur in the target. In Fig. V.28 the type of record obtained by this method is
compared with one that would be recorded with an in situ gauge.

The ratio of the target to driver thickness where the rarefaction wave just overtakes
the shock is designated R. In Fig. V.27 we can see that time for shock through the driver
and the rarefaction waves to the shock transit tlme through the target is equal to

t =T/U, =D/U, + D/Ck + T/Ck . (V1)
With a little algebra it follows that
Cl=U,(R+1)/(R-1) =UR* . (V.2)
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Cl as indicated in Fig. V.27 is the Lagrangian sound velocity. The actual sound velocity,
C, is given by
C=Clp,/p . (V.2)

R* in Eq. (V.2) is in a sense an EOS parameter, since it is the ratio of the sound velocity
to the shock velocity. Several analyzers have been used: bromoform (CHBr3), den.ity
2.89 g/cm3; fused quartz; and some high-density lead glasses with densities of 4.8 and
5.2 gm/cm. A set of records obtained with these is reproduced in Fig. V.29. Bromoform,
in spite of being somewhat nasty, is usually used because of its high density and the case
with which high quality assemblies can be made. An example of the level of precision
obtainable with this technique can be seen in the distance-thickness plot in Fig. V.30.

If the driver and target are not the same, Eq. (V.1) is modified somewhat because
the shock and sound velocities are not the same in the driver and target plates. The sound
velocity in the target is now given by

1 1 111 1
z:g-u—rﬁlu—.,*@] - (v:3)
Here D and T refer to driver and target and U to the shock velocity. R again is the catchup
ratio of the system.

If the impacted plate is transparent, and if it radiates, then the sound speed can be
determined on a single sample. A record obtained from the radiation from shocked fused
quartz and one on bromoform are reproduced in Flgs. V.31-V.32. The quartz sample wus
made of several layers. An opaque fllm of Al was vapor deposited on the first interface to
prevent extraneous light from shocked gases in the driver-target free run space. Approx-
imately 80% transmission Al films were deposited on the other layers. In the bromoform
experiment, 5-micron Mylar films with Inconel coatings were placed in the liquid. Thus, as
the shock progressed through the assembly, an increase in the radiation occurred at each
interface. If these Interfaces are parallel to the shock front the rise time through these
interfaces is a measure of the structure of the shock front. Hence a well-determinied mea-
sure of the shock veloclty can be obtalned if the spacing is known, as well as the catch-up
ratios. Thus, the shock velocity and the sound velocity at pressure can be measured on
the same experiment.

Il Recovery Experiments

P’robably every shock-wave research group has performed some recovery experiments
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at some time or other. There are at least two reasons for this: (1) some interesting things
have been observed; and (2) it is just plain fun. DeCarli and Jamieson [45] reported on the
successful recovery of diamonds from shock-loaded carbon. We do not believe their recovery
system has been fully described, but a modest yield of diamond can apparently be obtained
in various explosives systems. The type of recovery system outlined in Fig. V.33 has been
used by several laboratories. This particular system was used by Zukas and McQueen
[46] to produce fine-grain iron. For recovery experiments we prefer to use impactors as
opposed to in-contact HE experiments, because the length of time the samples are at
pressure is easily estimated. This also makes it straightforward to specify how thick the
front spall plate should be, and approximately where the side protection rings should be.
When these considerations are observed, the central regions are recovered with remarkably
little distortion. There is some distortion where the samples are located, which is to be
expected because the samples and the holders 40 not have precisely the same shock-wave
characteristics, e.g., shock impedance and compressibilities. We have used iron for most
experiments because it is cheap and strong and comes in in convenient sizes for making
the assemblies. We have found that some materials, boron nitride for example, just left
the holes they were placed in. For BN this was probably due to the large phase change in
that material. For these materials we simply countersink a hole in the top of the container
and weld a plug in place. Reasonable care should be taken to avoid altering the samples
by highi temperatures. Weiding is not required for most materials.

Rether than use a conical plane wave HE lens, we prefer to use a plane air lens to
initiate the driving HE. Line-wave generators are used to initiate a aweeping wave in a
thin sheet of HE chat drives a metal plate so that it reaches the HE charge more or les:
simultaneously. This type of system is used for most recovery shois to minimize the cost
and to minimize the tetal amount of HE used In the experiments.

Another recovery system (Fig. V.34) that has been used frequently is the cylindrical
sweeping wave system. The material of interest is loaded Into a pipe, usually stainlesa steel.
Sometimes end plugs are used, other times the ends of the holder pipe extend beyond the
sample are simply extruded together In the shot. Deta sheet is wrapped around the holder.
The thickness of the wrep gives some control of the pressure pulse generated. To mlnimize
the amount of explosive and to Increase the pulse-time response, confining shells are often
used. Here the annulus between the HE and the confining shell wave was sometimes filled
with Hg, thus ellminating any machining and problems of putting the HE in the plpe.
Similarly Comp C can be used by simply packing It between thie inner plpe and confining
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pipe. A disk of explosive is placed in contact with the charge on one end and is initiated
at the center. All one needs to do now is to pick up the pieces. If a ateady state Mach
disk is formed, then the pressure in the material in that -egion can be determined from
the detonation velocity of the explosive. The maximum pulse duration is in general not
known, but it is usually quite short. There is also a radial distribution for the maximum
pressures reached. Recently Morris, McQueen, and Marsh [47] desc:ibed some experiments
and hydrodynamic calculations relative to formation of Mach disk in these geometries.

V1. THE LINEAR Ug-Up RELATIONSHIP

From the examples shown in the previous sertions it is apparent that the shock-wave
data are adequately.described vy the linsar U,-U, relationship. This was noted many
years ago [14], and because the U, vs ], data were remarkably linear, it became common
place to describe the Hr 36niot lnci with the equation

We will often refer to this equaticn as the linear EOS or the linear Hugoniot. In this
section Cyp is the gsero-pressure intsxcept and S the slope. Usually S refers to entropy, but
in this section we will use S for the sione to rnake it easier to see in the equations. Co is the
zero-pressure shock velocity and scuid be aqual to the zero pressure bulk sound velocity

Ce = {C} - (4/9)C3)"* . (V1.2)

C) and C, are the longitudinal and s:ear elastic wave velocities for an isentropic material.
In most instances the agreement of the shock-wave intercept, C,, and Cp is within the
experimental accuracy. Several peoy.s have investigated the appropriateness and adequacy
of this simple relationship Pastine and Piasces] [48]; Ruoff [49]; and more recently, Jeanloz
and Grover [50]. There is no doubt that in the absence of phase changes and nonideal
behavior caused by elastic waves the description is quite good. We tasted it for 19 met-
als by fitting the data by the method of least squares to linear and quadratic terms in
Eq. (VI.1). We found that the sign of the quadratic term was plus or minus with almost
equal frequency. Moreover, because of the extra degree of freedom, it was sometimes found
that the sigmas for the quadratic fits “vere greater than for the linear.

Probably the greatest use for an ZOS8 for materlals before the development of atomic
bombs was for predicting the stat- of the interior of the Earth. These EOSs were based on
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whatever data was available and the best ccientific insight. However, most involved some
type of expansion, which we know is not a very reliable method of extrapolation. Recently
Jeanloz [51] compared the shock-wave EOS, Eq. (V1.1), with finite strain theory by mathe-
matically expanding and comparing equivalent terms. He found that the Birch-Murnaghan
equation, and the linear EOS, are virtually indistinguishable. He also compared Eq. (VI.1)
with other EOSs. If the shock-wave EOS is not appealing to one because of the procedures
required to calculate temperatures and to account for entropy, these other EOSs might be
beneficial. For those interested, Jeanloz determined higher-order terms than are developed
in the next section.

Without needing to fit data with various expansions, some insight to physical behav-
ior or properties can be made by examining the coefficients Co and S. The first requirement
is to express the Hugoniot relations Egs. (I1.37-I1.43) in terms of these coefficients. The
pressure, Py, as a function of volume, V, is

Co(Vo—V)

Py = VI3
T Vo -8(Vo - V)P (VL3)
Its pressure derivative with respect to V becomes
dP [Vo +8(Vo - V)]
T e |
Pu=av|, =~V - s(Vo - V)p? (VL4)
If we substitute the value of the compression
N = (Vo - V)/VO ’ (VI.5)
which from the conservation of mass [Eq. (I1.37)] becomes
1=Up /U, (VLe)
Eq. (VI1.3) becomes
__ GCén
and its volume denivative
—pl _ “’Ccz) (1 + Sn)
dP/dVlH =Py = T (T og)8 (VL8)

In terms of n, the slope on the isentrope (I1.73) along the Hugoniot can be written

dP 3(1 4 S 3

V(1 -Sn)® ' 2 Vo(1 - Sn)?
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Recalling that the sound velocity C = V(—-9P /8V)=/ 2, the expreasion for the sound speed
along the Hugoniot becomes

Co(1 —1n) 1/3
(12- smpeia [T —n)] (V110

Cu=
Since the sound velocities can now be determined along the Hugoniot at high pressures it
is possible to calculate 4 from these experimentally determined quantities. Solving for py
in Eq. (T1.73) gives
2[Py - Pg)
M= Py +PL(Vo — Vi)

(VL11)

We saw in the previous section [Eq. (V.2)] that there is a unique relationship between
the sound velocity and the shock velocity, R* = CL'/U,, in the overtaking experiments used
to determine the sound velocity. If we use that feature, Eq. (VI.11) becomes considerably
siLapler when incorporated in the linear U,-Uy, relationship. The isentropic pressure deriva~
tive becomes

P, = dP/dV|g = -C?/V? = —[R*U,/V,]? . (VL12)

In terms of C aud S, the shock velocity from P = 0 is
U2 =V,Pu/n=C3/[1-8Sn)* . (VI.13)

This term can be canceled out of all four terms of Eq. (V1.10), which becomes

-1+ Sn)

N [R*/V,))?
P_l_ 9(1
2 " (1'—) on(1+SﬂT ’ e
Vo/ V3 (1-8n)
or _ o{@ +Sn) — R*(1 - Sn)} (VI.15)

Sn3

If we look back at the first equation for 4, Eq. (VI.11), it becomes apparent that to
make meaningful determinatlon of v one must go to higher pressure, where the difference
in siopes of the Hugoniot and isentrope becomes large enough for the calculated +'s to be

meaningful. Of course, It is at high pressures that we most need to know 4. A rather
fortunate circumstance.



There is one more relationship we need and that is the pressure derivative of the
adiabatic bulk modulus expressed in terms of the coefficients of the linear EOS. The bulk
modulus, Ky is defined as

Kg = —V(dP/dV)x (V1.16)

and we will find its pressure derivative using the definition of P} in Eq. (IV.4). Thus

g_xl) _ caVVe +5(Ve ~ V)]
@ )y~ Ve S(Vo- WP

(VL17)

[Vo + S(Vo - V)] .
Vo= S(V, - V)l} - (V118)

dv C3
B («TF) Vo= 5(v. = V)]s{["° +5(Vo—~V) - SV - 35

So~tP=0

dKs _ s[Vo— SV, — 35V,
dPpoo ° V3

The zero-pressure derivative of the bulk modulus is usually defined as K/, 80 in terms of
the Hugoniot it becomes

(V1.19)

K,=45-1 . (V1.20)

K[ is difficult for static experiments to measure, as this is basically measuring the
curvature of the P-V curve. Even though the pressure range of the static experiments has
increased or exceeded the pressure regime for routine shock measurements, an accompa-
nying decrease in accuracy has prevented a better resoluticn of this parameter.

It would be beneficial to find some physical reasons to explain why the linear relation-
ship (VI.1) is so good. As stated by Jeanlor [51], “A remarkatle finding that has emerged
from these studies is that the pressure volume relation of the Hugoniot can be expressed in
asimple form for virtually all materials that have been examined. This is surprising in the
sense that there is no general expression known from quantum mechanics for the energy
of a condensed phase as a function of volumetric strain. As the EOS is the observation
of the energy with respect to volume, the Hugoniot should be sensitive to the changes in
dmtron densities that occur under pressure.” What is more remarkable is the fact that
this has been known for over thirty years. We can offer a couple of arguments for why
the linear relation works so well, but nothing profound. We do note that it starts off right
and heads in the correct direction. This is obvious from Eq. VI.1. It can be seen that in
the P-'/ plane the Hugoniot (Eq. VI.4) has an asymptote, V,, where a finite comjression
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results in infinite pressure. This is determined from the slope of the Hugoniot (VI.4) and
is given by
Vu/Vo=(8-1)/S . (VL.21)

This is probably the most significant feature of the linear EOS; it not only starts right and
heads in the right direction, but it also continues in the right direction. Jeanloz compiled
a hisiogram of the frequency of the slopes in Marsh's [52] compendium of LANL’s shock
wave data (Fig. VI.1). This shows a bimodal distribution around s = 1.25 and 1.45. A
cursory examination of the data does not show any significant reason for the two maxima.
For example the metallic elements range from close to 1.0 to over 1.6 with some of the
extremes known to be associated with phase changes. There are evidences of periodic
effects, but exceptions are numerous (see Table VI.1). In Table I some slopes, S, of the
elements are listed with the elements in a periodic chart. Trends can be scen going across
the chart but what may be of greater interest are the values of some of the elements in
the vertical columns, The slopes of the lanthanides were nicely tabulated in the work by
Carter, Fritz, Marsh, and McQueen [53] Fig. V1.2. All the lanthanides examined exhibited
phase changes so they 53] plotted S's for both the high and low-pressure phases. As might
be expected the slopes, in general, show a trend changing slowly with atomic number
going from La to Yb (except Ce). In this series the outer electronic configuration remains
relatively similar. From the data plots it can be inferred that most of the transitions have
little if any volume change, indicating the phase changes are of second order. Moreover, the
phase changes are believed to be caused by anomalous melting. Alkali halides make up a
part of the sampling and they also seem to follow the trend. There are synthetic (plastics)
in the group, and aithough they are spread out, they have in general larger slopes. Oxides,
as might be expected, tend to fall in a group with smaller slopes. The question that needs
to be answered is whether V, has any physical significance. The fact that the internal
eneigy also approaches infinity as V, is approached further complicates the problem. This
means that increasing the shock strength in a normal material finally merely increases the
internal energy and pressure without increasing the density. This also suggests that the
compressed atomic volume need not be as small as one would think.

Perhaps a more reasonable meaning of V, is that it is the volume that the electronic
distribution being sampled tends to go before a major restructuring takes place. For ex-
ample, the EOS of elements with relatively high electronic densities is reasonably well
described by the Thomas-Ferml-Dirac models by the tiine the pressure reaches ~10 Mbar.
This implies that the extrapolations referved to are not necessarily very great. Eventually
the compression of these materials wlll be governed by the interstitial electron gas densi-
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ties. The large atoms (alkali metals) still appear to be influenced by the original periodic
structure at 10 Mb, and in spite of their original large compressibilities still Liave further to
go before the T-F-D models are appropriate. Regardless of the physical significance of V,,
it is true that having a Hugoniot headed toward some asymptotic density does not cause
any problems, at least when using (VI.1). Of course it was not intended that pressures be
extrapolated to infinity, and as yet (V1.3) has been verified cnly to modest compressions.

Another interesting feature of the linear EOS is that it can also be extrapolated into
the negative pressure region (Fig. Vi.2). Although it cannot be extrapolated to infinite
negative pressure, it is easily extrapolated to infinite volume. From the Eq. (V1.6) for n,
this occurs at U, = 0. Moreover, we see that at U, = 0,

Uy =-GC,/S , (V1.22)
which tells us that the energy at £ = 0 is given by
Uz
E. = —21’- = %(CO/S)’ : (V1.23)

Rodean [54,55] discussed the meaning of this term. However, we [66] identified it as the
cohesive energy when we tested it on some metallic elements in 1967. Data plots (Figs. V1.4
and VI.5) by Rcdean compare measured binding energies with the /,/S)?/2 relation for
a large number of materials. The overall agreement is impressive.

As we mentioned earlier, the pressure cannot be extrapolated to minus infinity. To

find the maximum tension predicted by the linear EQOS, we find the critical volume, V.,
when P}, equals zero:

Ve/Vo=(S+1)/S . (VI.24)

This determines the critical pressure, P:
P. = —p.Cl/4S . (VI1.25)

For materials like W and Mo, the above equations predict ideal yield strengths greater
than 0.5 Mbar. It is not very likely that these values will ever be verified. However, some
dynamic tension experiments were performed on some single crystals ot Cu. The results
indicated that Cu supported tenslon waves in excess of half the yield strength (230 kbar)
predicted by the previous equatlon.

It is debatable how much physics is involved in the above. It is well known that
at equilibrium there is a halance between cohesive forces and repulsive forces no matter
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how complicated the nature of the forces. It is also well known that the initial bulk
compressibility or the sound velocity, correlates well with hardness (Moh scale), which
correlates well with the cohesive energy. Thus it should be no surprise to see this term
in an equation for the binding energy. The fact that slope of the Hugoniot, S, represents
the net result of many interactions leading to an effective repulsive coefficient that by all
evidence is effective over a very large volume is somewhat of a surprise. There has been
objection to the way the linear EOS approaches U, = 0. We simply note that there is
ample space to bring the U,-U,, fit back to zero pressure in any manner you please.

Two caveats must be observed in using the linear EOS and the Mie Griineisen EOS to
describe states off the Hugoniot in a hydrodynamic calculation. If the volume exceeds V.,
the sound speed will become zero or negative and most calculations will become ‘unstable,
because there is no communication between adjacent zones. If the compression exceeds
that predicted by V,, there will simply be no EOS prescribed. There is very little chance
for this to happen if S is close to one. However, for plastics and other materials that have
large S's, this can easily happen.

Whether the EOS in the negative pressure regime actually follows that locus will
probably never be known. We do not believe the linear relationship is precise or that
the two cited extrapolations are really meaningful. What we do believe is that the linear
relatiorship has the characteristics to fit shock-wave data; hence when deviations are
observed — discontinuities, change in slope, whatever, — the chances are good that some
type of phase change has or is occurring. The U,-U, Hugoniot for an initially porous
material is always concave downward, with most of the curvature in the low-pressure region.
If the data are fitted so that the upper segment is linear, there should be no problem. Or
or.e could simply transpose the data to a Hugoniot centered at crystal density and find its
linear EOS; or one could just run the metastable Hugoniot curve and let the calculator
find the zero porosity Hugoniot (Sec. III). We recall that because the shock velocity is in
essence a differential measurement, it is sensitive to changes in slope in the P-p plane. One
final remark: if a quadratic term is included in the U,-U, EOS, even modest extrapolations
can cause unrealistic things to occur.

VIL. THE SPECIFIC HEAT AND THE GRUNEISEN PARAMETER

It 15 sometimes of interest and sometimes important to know the temperature of
shocked-compressed materials. In geophysics, for example, temperatures of shocked mate-
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rials and/or temperatures of isentropes are of considerable interest in inferring the probable
temperature distribution of the Earth. Melting at high pressure of course is a temperature-
related phenomenon, as are many thermodynamic {anctions, e.g., the Gibbs free energy,
required when the locations of phase boundaries are to be calculated. As one would expect,
both the specific heat and Griineisen parameters are required to make these calculations
(Eqgs. ITI.11~II1.18). Fortunately, the behavior of these parameters can be predicted satis-
factorily for most .naterials at atmospheric pressure by statistical mechanics. The volume
dependence of these functions is ordinarily determined by measurements at different tem-
peratures. The assumption thut the specific heat and gamma are functions of volume only
has been used routinely in high-pressure applications at modest temperatures. Shock-wave
studies have been used to verify some of these assumptions and will be mentioned later in
this section. The two most obvious quantities to measure to show how specific heat and
gamma vary at high pressure are the temperature, by measuring thermal radiation, and
the sound velocities, by measuring overtaking wave velocities. Some results of shock-wave
studies of this nature and some from measurements on porous materials are presented.

The Los Alamos group reported a large amount of experimental data [17], and to
make the EOS as useful as possible they calculated and reported temperatures along the
Hugoniots, &t the foot of the pressure-release isentropes, and the P-V locus of the zero
Kelvin isentrope. They wished to make these calculated quantities as accurate as possible.
This meunt describing the specific heat as well as reasonably possible, without expending
the large amount of effort that would be required to incorporate all the data available.

For many solids, an adequate representation of the specific heat can be obtained from
one of the simplest forms of the Debye theory. The form used by the Los Alamos group
was characterized by a single Debye theta, O(V), which is a function only of volume. The

thermal energy Er = E — Ek, where Ek is the energy of the solid at T = 0 K and the
same volume, is given by

Er = 3nkTDjy(x) (VIL1)
2 [* sds n
Da(x) = ;5- . -.T-_—_—i (V"...)

Here, n is the number of atoms per gram, k is Boltzmann's constant and x = ©/T. The
specific heat and the entropy are given by

Cv = 3nk[4 Dy(x) — 3x/(e* — 1)] (VIL3)
and
S= 3nk[§Da(x) —In(1 - e"‘)] . (VIL4)
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This form for the specific heat is consistent with the assumption that the Griineisen pa-
rameter depends only on the volume, since it can be seen from Egs. (VII.3) and (VII.4)
that the specific heat depends only on the entropy. They used these thermal equations to
approximate the specific heat. They chose © so that Eq. (VIL.3) would give the correct
room-temperature zero-pressure value for the specific heat.

For some materials, neither Cy nor n was available, so they used the approximation
k9 = hco(6x%np)!/3 . (VIL5)

In the cases where Cy was known but n was uncertain, they used n s Cy/3k, provided
that the sound speed and density were low enough to expect a low Debye theta.

This simplified choice for the specific heat does nnt represent the detailed behavior
of the specific heat of most materials, particularly at high temperatures. The electronic
contribution to the specific heat, important for metals at high temperatures, and the an-
harmonic contribution of the lattice vibrations to the specific heat (linearly increasing with
temperature) are not taken fully into account. The optical modes for some of these solids
could be better represented by an Einstein theta, ©g. The choice of specific heat used
does two important things. It gives a reasonable way to determine the initial density of
the zero-Kelvin isentrope at sero pressure. It also assures that the calculated tempera-
tures at modest pressures are as accurate as can reasonably be expected. The error in the
Px(V) curve produced by the inaccuracy in Cy is probably less than or comparable to
the uncertainty in the Hugoniot curve at modest pressures. All the zero-Kelvin isentropes
calculated from Hugonlots in the high-pressure/high-temperature region have large uncer-
tainties caused by lack of knowledge of gamma. For metals the increasing contribution of
the electrons to the specific heat at high temperatures invalidates the assumption that the
Griineisen gamma is a function only of volume.

Referring to supplemental calculations (Sec. III) it was shown that isentropes can be
calculated directly from the Hugonlot (III.5). If one extrapolates the Hugoniot a bit to
negative pressures, a pressure-release isentrope from sone point on the Hugoniot can be
calculated to sero pressure. One could then use the procedures outlined in this section
to determine what the temperature should be along this isentrope, using (II1.17). This
procedure hus been used [12], except that Instead of extrapolating the Hugoniot, the
locations of the isentropes at P = 0 were successively tied to an energy-volume locus
determined from experlmental specific heat and thermal expansion data. These zero-
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pressure energy-volume loci are not usually available and must be compiled, which in light
of uncertainties in gamma, makes some of the simple approximations more appealing.

When the pressure becomes quite high, a more accurate characterization for the
specific heat would be the following:

Cv = D(T) + be(p/po)7.T (VII.6)

where D(T) is the Debye function, b, is proportional to the density for electrons at ‘he
Fermi level at STP, and ~, is the electronic Grineisen parameter.

Sorme C ‘s on the Griineisen P I

It could be seen throughout the first sections that all states off the measured Hugo-
niot required the use of the Griineisen parameter, <, in the calculations. Temperature
calculaticns along isentropes also required it, as well as along Hugoniots where the specific
heat is aiso required. The eacly work by Grineisen in 1912 [57], and more conveniently
Griineisen [58] established the fundamental concepts of why this theoretical or thermo-
dynamic parameter has the properties it does. Space does not permit a complete review
of this subject, and for further reading the work by Slater [59], Seitz (60|, and Born and
Huang [61] is recommended. Let it suffice to say there are theoretical reasons to justify ~
being independent of pressure, at least in the working range of most of these experiments.
One of the basic results from these studies is that 4 is a function of volume only. To

our knowledge this has really never been tested, since 4 has never been measured at two
temperatures at the same density.

These studies show how closely gamma and the specific heat are related. In fact,
from Eqs. VII.4 and VILS above and a slightly rewritten Eq. (IIL.11),

dT/T = —4dV/V +dS/Cy , (VILT)
the usual function for v is obtained:

din®/dInV =—-4 . (VIL8)

The definition of the Grineisen parameter, v, given at the beginning of Sec. I1I, was
adequate for the applications there. However, it does not establish 1tsa numerical value. In
terms of measurable thermodynamic variables at gero pressure,

2
T, (VIL9)

7= V(dP/dE)y = 5~
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where a is the volume coefficient of thermal expansion. At standard conditions for many
materials 7 is about two. Of the three parameters defining «, two are rather difficult to
measure, so values of 7, are in many instances accurate only within a few percent.

We have referred to vy and the Mie Griineisen EOS. The origin of these lies in sta-
tistical mechanics. For a metallic crystals it is assumed that the thermal energy can be
described as the sum of the energies of a set of simple harmonic oscillators whose frequen-
cies, ¥4, are functions of volume only. The internal energy of the system is given by the
sum of the potential energy, ¢(V), of the cold lattice and the summation of the normal
modes, 3N, of the N atoms. Thus the energy is given by

= [hwa . hu,
E=¢(V)+ ) [ 5 + oo ,m_‘] , (VIL10)

and the Helmholtz free energy by

3N
A=¢(V)+ ) hva/2+KkT ) In(1—etve/kT) | (VIL11)
ams] ams]

The volume derivative of A gives the pressure:

(A _ d¢ 1N [hwe . hue ]
°= (3V)T— dV+V§_:!'7°[2 +ehu.7kT—lj ' (VIL12)

where v, was defined as the logarithmic volume derivative of the frequencies

dlny,

Ya = —a'n—v— (VII.13)

On the assumption that the frequencies of all the normal modes change proportionally the
same with volume, the 7,’s can be taken out of the summatlon and the subscript removed,
and VIL.12 gives the Mie Griineisen EOS:

P 9¢

= 3V + %‘Evlb . (VIL14)

Simullar results can be obtained In the high-temperature classical limlt, where the energy
of each osclllator s.pproaches kT; VII.12 then becomes

aNkT [ 1 X
P-Pk= "’"‘“‘—'v g'ﬁ }‘_11"] ’ (V".lﬁ)

58



where 7 is now an average value of logarithm.. derivatives.

Several efforts have been made to find a functional form for v using various as-
sumptions concerning the vibrational spectra, etc. Slater [59] assumed an isotropic body
and a constant Poisson’s ratio. Using the relationships for the isentropic values for the
longltudinal and transverse sound veloclties, he obtained the result that

m = dlny/dinV (VIL16)
are equal for all modes of vibration. Further work leads to the Slater formula

2 3
y=_Y(9°P/OV]) _g , (VIL17)

2 (9P/aV)

Dugdale and MacDonald [63] proposed that the constant term In the Slater relation
be changed from -2/3 to -1/3. Their result came in part from the zasumption that for
a Hooke’s law EOS for the interaction forces, the Lhermal expanslon is sero. It was ar-
gued that the iast assumption was incorrect. Rice [14] used the basic assumption that the
potential energy of a cubic crystal lattice is some function of the Cartesian coordinates.
They also assume that the spatlal derlvatives of the potentlal all change in at the same
rate with volume. The force constants govern the amplitude of the thermal vibrations.
This leads to the conclusion that these are equivalent to the equivalent set of harmonic
oscillators. With further work they arrived at the Dugdale-MacDonald relationship. An-
other development, called the free volume model, glves a similar result with the constant

coefficient of VII.17 equal to one. It seems appropriate to write the equation for v based
on the various assumptions as

_ Va3(Pv/3)/dv3
=2 4(PVIR) AV

~
-3 - (VII1.18)

The above equation can be solved for a linear EOS, in the same manner as was done in
Sec. VI. After a conslderable amount of differentiation and algebra an equation is obtained
for the sero pressure value of 4.

Yo=328-x . (VIL.19)

Since 8 can be measured reasonably well for many materlals, a simple test of the various
models can be made by using the measured 4,’s and S’s and solving for x in VII.17. The
x's examined by Rice have values centered around 1 + 0.4. The fact that the results are in
guod agreement with the models is probably fortultous. Tho overall functional form of the
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equation probably lies in the assumption that the frequencies of the normal modes change
at approximately the same rate with volume. As appealing as it is, such simplification is
hardly justified, considering all the approximations involved.

If one has fondness for these models and believes a better description of the zero
Kelvin isentrope can be made using them, it is suggested that « in the previous equation
be satisfied by the thermodynamic 4, Eq. (VII.10) and the tlope S. It is then possible
to solve for the zero-Kelvin isentrope with VII.18 and the difference equation, II1.5. In
order to solve the equation it is necessary to start the calculation with the correct volume
derivative for . This can be obtained in terms of S, and it is given by

dy/dV = [S? - S/3+5/9]/V, (VIL.20)

when x = 1. The result of such a calculation is shown latez for Cu where x = 1.
Gamunas From Porous Materiala

In Sec. I1I it was shown how 4 could be obtained from shock-loading porous materials.
Probably the largest effort to measure v this way was reported in Kinslow [17]. Data were
reported on porous Cu, Fe, and 2024 Al. We have reproduced some of their results for Cu
in Figs. VII.1-VIL3. The experimental deslgn shown in Fig. V.13 was used, which enabled
them to measure the shock velocities In six samples in each experlment. They used the EOS
of Cu to determine the assoclated particle veloclty with the Impedance-match technique.
One objection in doing these experiments to determine « is that a value for 4 had to
be assumed to calculate the isentropes for the impedance-match solution. Since the final
results were compatible with the «'s used, the objection automatically disappeared. The
densities of the Cu samples were 89, 76, 60, and 43 percent of the crystal deusity. Steel
shims were used under all the flash blocks to minimize errors In calculating velocities for
the gap closure times. The closure times were calculated through an iterative procedure
that ensured that these times were calculated as accurately as possible. The shock-particle
velocity data (F'ig. 1) have conslderably more scatter than usuai because the samples did
not have uniform density. There are solid curves that go through each of the data sets.
These are Hugoniots calculated from the crystal density Hugoniot and gamma determined
from the relatlonshlp, py = 17.8, determined from the STP values. It was planned to use
various forms for gamma and to minimise the difference between the calculated and the
experimental points. It is clear that such a refined treatment is not justified and in general
the p,7, formulation is fairly good except at the upper end of the 0.8 density Hugoniot.
A quadratic fit of the U,-U, data was obtained for each density gruup by the method of
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least squares. Average values of (py)~! were calculated at constant volume from these
fits and the crystal density Hugoniot. These values are plotted with various types of lines
in Fig. (VII.3) and in Fig. (VI1.4) for Fe. In addition to these curves, the value of each
~ calculated from the crystal density Hugoniot and the P-V point are plotted. Most of
the calculated «'s lie around the value of dE/dP = (pv)~! = 0.056 cm?/g, s0 it comes
as no surprise that the calculated curves in the previous figures agree so well with the
data. As mentioned earlier in this section, the Dugdale-MacDonald relationship was ueed
to calculate the sero-Kelvin curve and the volume dependence of 4 for Cu. This form was
chosen because 4, = 2S - 1 for Cu. This curve is obviously also in good agreement with
the data in the p,~v, plot, but the p,v, constant curve agrees even better. From these
studies it was concluded that if no other data preclude it, that a constant p-y is adequate.

It was shown earlier, Sec. IIl, that the above (VII.21) was adequate when their
standards were cross-checked. Sound-velocity measurements in shocked 2024 Al [64] also
indicate that (II1.10) is a good approximation, but that it might possibly be refined with
better experimental data.

When deriving 7's from the measured AE's and AP's, on porous samples quite often
tlie states along the crystal density Hugoniot and the porous Hugoniot are not in the same
phase. Clearly, states on the porous Hugoniot will be melted and/or vaporized before
those on the crystal density Hugoniot, and there seem little doubt that the latter will
melt somewhere in the experimental range.

The question has been asked why ~ is not taken as constant instead of using o/
The answer is that it does not have the correct forru and at large compressior it produces
isentropes concave downward. Taking ~ as constant will result in zero or negative sound
velocities at high pressure. From the equation for the sound veiocity on the Hugoniot
(VI.10) it can be found that the scund speed becomes zero when
8—1—-7+|(v+1-8)*+45/'/?

2S

For Cu, with S = 1.5 and v = 2, the sound velocity becon.es sero at p = 0.56, but mejor
difficulties become spparent before that. A dashed line on Fig. VII.4 corresponds to 4 = 2.
The data lie above this line except near the origin.

n = (VIi.21)

A feature seen in U,-U, plots of data on porous materials is that for a modest amount
of porosity ~10% there ls a lot of downward curvature in the low-pressure regime. The

amount of this downward curviture becomes less with increasing porosity. The Hugoniot
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becoming nearly linear for porosity near 50%. This behavior can be explaiaed in a qual-
itative manner by referring to the figure (II1.4) of the P-V loci of the porous and crystal
density Hugoniot. There is a dashed line indicating the Hugoniot locus. It was drawn
above the axis from its origin to Vy as a manifestation of the material rigidity and as such
represented a crush or collapse curve. If one assumed that the porous material were ideally
distended and existed at V,-P, in 2 metastable state and was then shocked, it would not
follow the Hugoniot indicated by the dashed line. Instead it would go below the P = 0
line and cross it at the crystai-density volume. This is the solution if the problem were
solved by application of Eq. (IIL.8) for calculating recentered Hugoniots. This curve would
then run into the dashed curve at higher pressure. The salient feature illustrated, is that
the Hugoniot for the porous material will head toward the origin of the crystal density
Hugoniot, and from the shock-wave conservation relationship this also means the origin
in the U,-U, plane. Thus all those curves drawn in Fig. II.1 arc more or less trying to
head toward zero. Examination of the P-V/V, loci, Fig. VII.2, shows that their curvature

becomes less with increasing porosity, moreover, their slopes at high pressure also become
steeper.

When derivatives become zero or infinite simplifications sometime occur in related
equations. We have already scen, Eq. (VI.16), that for a linear EOS, when

7 =1/8 . (VIL22)

P} beco.nes infinite at an asymptotic volume, V,, determined by the slope S. Looking
further we see fiom (VI.11) that v is al:c deiermined, and It is given by

T=2Vy/(Vo—-V,) . (VII.23)

It should be noted that this result Joes not depend on the Hugoniot having the linear
EOS. Anywhere P}; becomes infiaite, gamma is dotermined. Gamma can also be written
in terms of the slope an from (VII.24) and (VI1.25). It is given by

7 =2(8.-1) . (VIL.24)
For completeness the inverse of the previous two equations are

Va/V=79(v+2) (VI1.25)

and
Sa=(v+2)/2 . (VIL.26)
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From (V11.24) we see that anywhere the slope, S, of a U,-U, Hugoniot satisfies the
relationship

S. = U, /U, (VIIL29)

P} becomes infinite. This just gives a class of linear EOS’s where C, is zero. These

Hugoniots are simply straight lines from the origin and represent isovolume curves in P-V
space.

The Los Alamos group [17] offered a little test on this concept of 4. They proposed
that if v is indeed only a function of volume, then there should exist a Hugoniot whose
asymptote occurs at crystal density (that is one of the family of Hugoniots of porous
materials that should ideally be heading toward Vcry,ta1) With an intercept, C, = 0, and
a slope given by (VII.27). They used the STP values for « for the three materials they
investigated. The percent porosities that satisfied these criteria were 50, 49, and 46% for
Al, Cu, and Fe, respectively with corresponding slopes of 2.00, 1.98, and 1.85. Even though
there is a lot of scatter in the data, the overall agreement is good.

It could be asked of what use is the little exercise just described, eince the gamma was
already known at Vyeal. The answer is that the exercise has demonstrated a concept.
Moreover, if the samples had been of higher quality perhaps the data wouid have been good
enough to establish whether or not the appropriate U,-U, Hugoniot was indeed linear or
not. In either case, knowledge of the behavior of this fundamental parameter would have
been obtained in a energy-density regime quite inaccessible by other techniques. The
experiment is not restricted to the particular amount of porosity specified by the STP
value for v, to determine a ~,. Any place in the P-V phase where the P} is vertical
determines v, and aiso the pressure where it occurs. The requirement is that the porosity
be great enough so these conditions can be accessed. Just a ciosing comment, measuring
the density well of these very porous material is as difficult as measuring their Hugoniots.

Gammas From Overtake Measurements

The principles and techniques for determining gammas by the rarefaction overtake
technique were described in Secs. IIl and V. Shock-wave physicists have been aware of
the possibility of doing this probably before shock-wave physics was considered a science,
as the overtake criteria was also a deslgn criteria for making shock-wave measurements.
Al'tshuler [65,68] recognized the importance of such measuremcnts and he performed a
series of over 20 experlments to determine the sound velocity at one pressure point. The
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overtake position can be located quite well with the optical a-~alyzer technique. At high
pressure, or what is more important, when P} becomes fairly steep, it should be possible
to measure gamma to better than 10%, if elastic-plastic flow does not make it difficult
to decide exactly where the bulk sound wave is. The first overtake wave detected can
be measured with a precision comparable to the shock-wave velocity. Conseguently some
investigators have not reported on the value of gamma until they reach the melting point.
To date, what is usually done is to plot the derived sound velocity and compare them
to those calculated with the poyo constant value. This seems to suffice, for example see
Fig. VIL.5 [67]. To date the following elements, C, Al, Fe, Mo, Ta, W, and Pb have been
investigated. Of almost equal importance, the experiments also enable one to determine
where melting occurs or at least where th system no longer supports a simple longitudinal
wave. The precise location depeuds on how close the experimental points bracket this
position. On occasion it appears that measurements have actually been made in the
mixed phase region.

VIII. EARTH MODEL BASED ON A HUGONIOT EOS

We owe much of our curren: knowledge of the state of the Earth’s deep interior to data
obtained from shock-wave measurements. The fact that the accurate measurement of two
quantities, the shock velocity and ths associated shock particle velocity, when coupled with
the conservation equations of mass, momentum, and energv, enable us to determine the
pressure, density, and internal energy states of materials at conditions existing throughout
the interior of the Earth. It is also interesting that the temperatures existing through the
Earth must be quite comparable t5 those existing behind atrong shock waves at comparable
densities and pressures. If one coneiders a simplistic Earth creation scenario, accretion
of material by impact and associated heating by the collision process, followed by the
subsequent compression heating as more and more material is accumulated, it is easy to
see that the temperature distributions through the earth must be near to the temperature
on the Hugoniot but with a smaller pressure gradient. It is also important to remember

that al ost all apparatuses measuring static pressures above ~10 GPa has been calibrated
frorn shock-wave data.

A serious weakness in the shock-wave experlments is the lack of knowledge of the
#iate of the material while under compression, or whether is is in equilibrium. Except for
some very limited flash x-ray work by Jchnson and Mltchell, 1970 [68] one can only surinise
what the crystal structure is. However, static presses are now capable of reaching megabar
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pressures, so some of those questions have now at least been partially answered. The static
experiment can be made on any time scale desired, while the time scale of the shock-wave
experiments is predetermined. However, since shock velocities are measured, the results
are essentially differential measurements. Because they are reasonably well measured, we
are able to determine the pressure derivative of the compressibility, K’, a quantity that
can not be determined well from high-pressure static experiments.

To our knowledge the first shock-wave data on geological materials to appear in the
literature was by’ Hughes and McQueen, 1958 [69]. By the end of the sixties, a considerable
amount of data was available. Figures VIII.1-VIII.2 are typical records for minerals most
likely to be in the deep mantle. Even though the time scale of the measurements was
often less than a microsecond, it was apparent that silicate type minerals were undergoing
high-pressure phase changes to much more compact structures. This verified Birch’s 1952
predictions {70] that the materials making up the Earth’s mantle must undergo phase
changes to higher-density, more clese-packed structures. Afi . the appearance of the shock-
wave data, many different investigators tried to use the data to formulate an EOS for the
high-pressure phase of high-density materials evidenced from shock-wave measurements;
that is, the EOS for the material if they existed at standard conditions but in a metastable
state (see Sec. ITT). Unfortunately, most of that work was based on EOS formalisms that
were not really amenable to ext. polation. That is, they simply did not work (see Jeanloz
(51]). Also contributing to the problem is the fact that the pressure-density range covered
by the shock-wave data above the phase changes is quite small. This meant that data of
the very highest quality was required to perform that type of calculation with meaningful
results, even though a proper form of the EOS was used.

Although it was apparent that the high-density phases of silicates with various
amnunts of Fe, Mg, Al, etc., could satisfy any desired Earth model for the mantle, the
actual composition was not determinable (Fig. VIII.3). The following papers are represen-
tative of the shock-wave data of mantle minerals [71-74]. Even earlier it was shown that
Fe alloyed cr mixed with small percentages (10-20) of lighter elements would satisfy the
density requirements for the composition of the Earth’s core. Balchan and Cowan, 1966
[75). Hugoniot data on Fe-Ni alloys by McQueen and Marsh, 1966 [77] eliminated forever
the romantic notion that the core was probably composed primarily of an Iron-nickel alloy
like the iron meteorites.

In 1964 there were two papers published on the constitution of the Earth, Bircn
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(78] and ours [79]. The results were in surprisingly good agreement even though the
calculational procedures were quite different. The main feature of our calculations was that
the Williamson-Adams procedure [79] was not used and no pressure-density distribution
was assumed. The linear U,-U, EOS was used to deterruine the density distribution of
the Earth, which in turn determined the coefficients of linear EOS for the various regions
of the earth. n addition to the linear Hugoniot fit required to perform these calculations,
it was necessary to assume a Griineisen +, a specific heat, and a temperature distribution,
since corrections were made for the difference in the temperatures on the Hugoniot and
the temperatures through the Earth. Uncertainties in the derived EOS due to the last
three parameters were smal( and will be discussed later. Because of the interesting results
obtained from these calculations, the procedures used for making them are outlined below.

Starting with the linear U,-U, curve, the pressure on the Hugoniot is given as a
function of density, and tne temperature on the Hugoniot is determined by application
of Eq. (II1.20). Since the temperature of the Hugoniot is not necessarily the same as the
temperature of the Earth at a given density, a pressure correction, AP, can be calculated
from the relationship

AP = AT(3P/4T)v = pyCv/AT , (VIIL1)

where AT is the temperature difference. The other thermodynamic parameter required
for the Earth calculation is the local sound velocity, (9P /3p),, which is calculated from
Eq. (VI.10).

The pressure in the Earth is found by integrating Poisson's graviiational equation
R
P, = / g(D)o(r)dr . (VIIL2)
Using the notation i — 1/2 and i + 1/2 for the boundaries f the ith zone, the following

diflerence equations are used for integrating the various parameters for the Earth: the
pressure in the Earth

(Pe)i, 172 = (Pe)i_y/2 + Sml(rl—l/z - f|+|/2) ) (VIIL3)

the gravitational acceleration

Bi+12 =G

|
M- E m|] /(r.+,,,)’ , (VIil4)
=1
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the incremental masses

m = (4/3)xa [ yya - ] (VIILS)
and the moment of inertia l
2
I|+|/z = § Em.rl’ . (VIII.G)
im1

In the above, quantities computed en boundarles but needed at midpoints are found by
averaging.

The density used in these equations is found by an iteratlve process that determines
an EOS that gives not only the correct seismic velocity but also the correct pressure. This
is found by interpolating between two trial equation of states using some percentage or
fraction. For this fraction, a denslty is first found that gives a sound speed that agrees with
the seismic velocity. This density is used in the previous equations to compute the pressure
in the Earth, which is then compared with that determined from the EOS. By successive
iterations a fraction is found that brings the pressure in the Earth into agreement with
the EOS pressure. The calculation is then advanced to the next sone. The interpolation
was usually made between EOSa that differed only in either the sound speed coefficient,
Co, or the slope, s, the remaining parameters being the same for both trials.

Although this procedure gives an ECS that satisfies the seismic veloclities and gravi-
tational equations, it does not at this stage necessarily give a unique EOS in C, and s. The
next step in the iteration procedure is to transform the calculated P-p Hugoniot points
to Us-Up, and compare these with the trlal Hugoniot curves. It was found that vuriations
in the trial EOSs change the calculated U,-U, curves in a predictable manner. Thus it
was possible to find trial EOSs that agreed with calculated U,-U, Hugoniots. For the B,
D, and E reglons it was found that a linear U,-U,, Hugoniot could be found for each (see
Figs VIIL.5-VIILY).

In applying the above procedures It is necessary to divide the Earth Into the usual
seismic regions. Since there are really only three parameters that one can use to restrain
or restrict what the composlition of the Earth might be, the radlus, the mass, and moment
of inertla, in addition to the selsmic data, it is not possible to solve the Earth's density

distrlbution uniquely for all the reglons. Thus, In some reglons, some compromises were
made:

1) The outer crust was taken to be ~10-km thick with a density of 1.8 g/cm?, underlaid
by a second 10-km layer with a dansity of 3.0 g/cm?®.
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2)

3)

1)

5)

tions:

1)

2)

3)

5)

The STP density, poB, of the B region was specified. This is a very critical parameter,
and at the time these calcuiations were made, it was not well known.

The C region was found by interpolating from the insidc of the B region to the outside
of the D region. This was necessary so that the mass in the transition region could
be calculated.

The EOS of the D region was fully determined by the calculational procedure, and
no compromise was required.

The D’ region, now called the D" region, was assumed to be a transition region
between D and E and was treated like the C region. There has been some speculation
that the leveling off of the sound velocity is cue to partial melting of the mantle,
which would imply that the rate of increase of density might decrease. However,
the accepted value of the core mantle radius of the Earth is now 3486 km, which is
~13-km larger than the value used in our calculations., Thus by our interpolation
procedure the density in this region was partially compensated.

The F and G regions were assumed to be extensions of the E region in the sense
that the seismic data for F were extrapolated into E. Since the two determining
parameters, the mass and moment of inertia, were already used, it was not possible
to include these regions separately. Moreover, the seismic data for the inner core were
certainly not very good at that time It would have been poesible to arbitrarily increase
the density of the G reglon by a small amount, but since there is so little change in
density at these pressures for a liquid-solid transition, and so little mass involved,
this was not done. The code for doing these calculation was already complicated.

The following paragraph summarizes the iteration procedure used in these calcula-

A density was found that gave the correct sound velocity for a particular zone. A
zone was one of the one-hundred sectlons of equal radii into which the Earth was
divided, except at “regional” boundaries.

The fractional composition between two trial EOSs was then found that inade the
EOS’s pressure equal to the Earth pressure.

An EOS was determined for each reglon, not in transition regions, that satisfied the
requirement for assumed uniform composition.

The Initial density of the core was adjusted to give the correct mass of the Earth.
The initial density of the lower mantle EOS was varied to give the correct moment
of inertia of the Earth.



6) For each iteration above, all the preceeding iterations were always satisfied.

The results of a series of calculations done with variations of parameters considered
not to be well known is presented in tho following table.

Free Qucillation Calculations and The Earth Hugoniot

At the time of wrlting (78] there was no actual way of determining the density at.
the outside of the B region. This is a very i:nportant constraint, as mentioned by Birch
and by us. We used values of 3.2, 3.4, and 3.6 g/cm? for the STP density of the B region.
All but two other problems were run with a density of 3.4 g/cm3, since we assumed this
density was probably the closest approximation to the actual value. The free osciilation
data have been used in many Earth calculations in the subsequent years. In particular
the Earth models Bl 1066A and 1066B by Gilbert and Nsiewonski, 1975 [80] and C2,
Arnderson and Hart, 1976 [81] have received considerable attention. With respect to the
present discussion, these models do, among other thingrs, put strong constralnts on the
density of the outer reglon of the B reglon.

Another Earth model by Dsiewonsk! and Anderson, 1081 that has received consider-
able attention is PREM (82], an acronym for “Preliminary Farth Model.” Except for some

character in the transition reglon, this model has essentlally the same density distribution
as the other models clted.
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It was stated earlier the largest uncertainty in our calculations was caused by lack
of knowledge of the STP density of the B region. It is now possible to eliminate this
uncertainty with the help of the 1975 Earth models, and to correct the Hugoniot EOS of
the Earth, EH. The current best estimate of pop is 3.34 g/cm3.

In Table IT are the calculated values cf the "J,-U, Hugoniot parameters of the mantle
D and core E for an assumed set of thermodynamic parameters. The most important
feature of the numbers in Table II is that if the assumed density of the B region is not
correct, then the derived densities and sound velocities for the core are wrong by about
half as much and in the same direction; the mantle parameters also change by about tae
same percentage but in the other direction.

Table II. Derived EOS constants for Regions D and E for the listed values of
the assumed thermodynamic parameters and their sensitivity to a ten percent

change in these parameters. These are for an assumed temperature at the D-D’
boundary of 3000 K.

Assumed pop = 3.34 g/cm® 4, =125 C, =1 x 107 egr/gK
= 4.09 g/cm? -8.0% +1.0% +0.1%
D C, = 17.39 km/s -7.0% -0.3% +0.4%

= 1.25 - 1.0% -
PoB = 3.34 Yo = 1.5 Cy = 0.75 egr/gK
p = 1.22 g/cm? +5.0% +2.0% +1.0%
E C, =65.03 km/s +5.0% -0.3% +0.3%
S = 1.32 - 1.0%

0t EEE——————— e e ]

The C, and S calculated for the B region, using the parameters listed in Table II, are
C,=6km/s and S = 1.46. The sound velocity and slope are not unrealistic for likely outer
mantle materlals, but these values were obtained in a very speculative manner, especially
because of the uncei «alntles in the temperature gradient and seismic data.

There are currently no unlversally accepted temperature distrlbutions of the core,
but most are more than 1000-K higher than those used in our earlisr work. To enable
anyone to make temperature correctlons on our derlved EOS parameters, the values in
Table III should be reasonabie estimates for the percentage change for u 500 K increase at
3000 K at the D-D’ interface.
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Table III. Percentage change from an
assumed temperature of 3000 K at
the D-D’ interface for a 500-K in-
crease in temperature.

po Co S
D +0.5% 40.2% +0.5%
E 40.3% +0.1% +0.5%

It is not surprising that these parameters are so insensitive to assumed temperature
distributions. This reflects on the inverse problem of trying to use EOS data to determine
temperature distributions.

Some Summary Remarks on the Earth Hugoniot of State

Nothing much has changed since our earlier work using the linear U,-U, EOS to
calculate the density-pressure distributions through the Earth. However, by using distri-
butions that use the free osciiiation data, a very close constraint can be imposed on the
gero-pressure density of the B region, which in turn restricts the EOS parameters describ-
ing the lower mantle and outer core. Because of the small number of parameters describing
the Hugoniot EOS, the initial densities were and are are in essence hinge points. These
densities were determined by the mass and moment of inertia constraints, and were not
after the fact extrapolations of calculated density distributlons for the various regions. The
zero-pressure sound speed determined with this procedure is also very closely associated
with the seismic and mass and inertia constraints and it is essentiai in satisfying the seismic
data. To our knowledge the proceduree outlined here are the only ones where the density
distributions and EOS are calculated simultaneously in a completely consistent fashion.

One thing emerges is the fact that the slope, S, of these derived Hugoniots appears
to be quite well determined. It can be seen that for all reasonable varlatlons in any of the
thermodynamic. variables, the slope, S, of the derlved metastable Hugoniots of the lower
mantle and the outer core are very Insensitlve. This is somewhat paradoxical, in that K/
or S are the least well determined paramaters calculated from all the varlous shock-wave
data inversion techniques used to estimate metastable EOSs. Moreover, K/ is usually
determined to less than 20% from statlc high-pressure measurements for materials that do
not even exhlbit a phase change. Since the slopes appear to be so well determlned for both
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the inner mantle and outer core, it would seem appropriate when calculating metastable
Hugoniots that are to be compared with Earth models, that these¢ values of K/ or S be
used as constraints. Thus if the other two derived parameters, p, and C,, for a material
do not agree with the values calculated for the Earth, then that material can be considered
not to be a likely Earth constituent.

c ition of the Mantl

From the results of the work just described, we believe the EOS of the material
comprising the inner mantle must have an EOS that falls within the limits

U, =74+0.2+ (125£001) U, , (VIIL7)

with a zero-pressure density

Pom =4.1%£0.05 gm/cm?® . (VIILS)

Now one needs only is find materials that meet these criteria and a few other restrictions,
e.g., they must be oxides or silicate-like compounds. It could be seen in Fig. VIII.3 that
there are many materials and combinations of materials that fall in the correct pressure-
density regime, but we know much more about the mantie than that. The problem is
complicated by the fact that most of the candidate materlals have undergone phase changes.
A group of rocks and minerals were compared with the Ear.h EOS (Fig. VIII.4). Here
the calculated density and the C,’s were plotted for various assumed S values. From the

results one can clearly eliminate most from further consideratlons as mantle constituents.

Two minerals:
Olivine = (Mg, Fe)3Si0,

Bronzite = (Mg, Fe)SiOg

have nearly the type of EOS required for mantle constituents. They also have very nearly
identical Hugonlots (Fig. VIIL.10). Thelr denslty and bulk sound velocity both are just
outside the range where we belleve the Earth EOS should be. To proceed further we refer
to an old plot of Birch’s law (Flg. VIII.11), which basically states that the sound veloclty is
a linear functlon of density for oxides and sllicates with the same mean molecular welght.
It is clear that adding a bit of lron (Increasing M) to elther olivine or bronzite will match
the density, but it will also lower the sound veloclty. To increase the sound veloclty and
maintaln M, the additlon of Al;03 or SiO; should do quite well. It would take ~20%
alumina to do the job. This might be more than some geophysicists would like. We
have a fundamental problem with the ollvine-bronzlte MgO/SIO; ratio. A stralghtforward
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mixture of the high-density oxides would give abcut the required values for the Earth with
a ratio of about two (olivine composition), but the density of olivine is too low, as is ¢hat
of enstatite, which appears to be identical to olivine. Clearly a dilemma exists.

c ition of the C

We have already seen that the core must be predominantly iron mixed with some
lighter elements or minerals. The results shown in Table II for the core (region E) are not
as credible as those for the inner manile. The seismic data for the core were not of the
highest and moreover were approximated by a single phase. However, the Hugoniot EOS
listed is certainly reasonable. The picture for the core that is emerging is that the outer
melted core is composed of iron mixed with some other lighter material. To date it appears
that iron oxide, sulfur, silicon, or any mixture of these can satisfy any constraint of the
geophysics community can impose. To date there has been no experimental data to favor
one model over any of the other. There does appear to be some agreement that the solid
inner core is freezing out of the outer core and is most likely fairly pure iron. Thus, the
composition of the Earth is believed to be fairly well known within the caveats mentioned.

The things that have been receiving attention during the recent years is the temper-
ature distribution of the Earth and the iron phase diagram.

The impetus for this activity has been experimental results from diamond-anvil ex-
periments, but mainly from two sets of shock-wave experiments. The sound velocity mea-
surements on strongly shocked iron [83] using the optical detection system [43] have enabled
us to determine the melting point on the Hugoniot, and they have shown us the location
of a new high-pressure phase (Fig. VII1.12). The temperature of the melting point was
calculated by the methods outlined in Sec. III. That work prompted a new generation of
phase diagrams. Shortly after the sound-velocity work was reported Bass, Svendsen, and
Ahrens (42| reported temperature measurements on shocked iron (Fig. VIII.13). These
data and some diamond-anvil results were combined and reported in Science {84]. The net
results of that work Implies that the temperature of the inner-outer core boundary must
be approximately a thousand degrees hotter than the calculated temperature based on the
sound velocity data. The diamond-anvil work by Boehler, von Barger, and Hoffbaure [85]
are significantly different than [84] and a phase diagram based on that data In general
appears to be more compatible with the points based on the sound-velocity data.
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Current Work

At the present time there is an effert to measure the longitudinal sound velocity in
both olivine and bronszite through conditions existing in the mantle and into the melting
regime [86]. This will establish where these materials melt on on the Hugoniot and also
the value of the Griineisen parameter in the melt zone. There is al*o an effort to measure
their shock-temperature loci. The first endeavor will allow us to see if one assemblage or
the other matches the seismic velocity of the mantle better. Knowing where the material
melts on the Hugoniot could put restrictions on the maximum temperature of the mantle.
Measuring the temperatures of these materials will reduce the uncertzinty in this limit.

The recently reported temperature measurements on iron were done by observing the
radiation coming from the iron through a sapphire window. There is some question of how
to calculate the temperature of the iron from the observed radiation from the interface.
This problem is currently being addressed by three shock-wave laboratories.
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Fig.I1.1. Schematic for deriving the equation for conservation of mass. For one-dime.: ‘onal
flow the cross-section A is uniform through the tube.

Fig. I1.2. Schematic used for deriving the equation of motion in plane one-dimensional
flow.

Fig. I1.3. A moving s:ab of material undergoing compression used to develop the La-
grangian form of the one-dimensional equation for the conservation of mass.

Fig. I1.4. The pressure gradient in a slab of material to develop the equation motion.
Fig. [1.5. The power input into a Lagrangian element.

Fig. I1.6. A Lagrangian x-t representation of the impact of a relatively thin moving plate
usually designated as a driver or impactor, with a thick stationary plate often referred to
as a target. The rarefaction waves have just begin to interact, and they will soon put the
target plate in tension.

Fig. I1.7. Schematic showing the locus of the rarefaction wave interacting with a shock
going through a rectangular sample. It is assumed the driver impacts the sample at. t = O as
indicated. The shock wave reaches the top of the sample at t = Y /U, and the rarefaction
wave frormu the edge has moved into the sample a distance X at that time. The driver
sample interface has moved a distance Y, at that time.

Fig. I1.8. The impact of a flat plate on another plate of the same material showing idealized
velocity and pressure profiles and the location of the shock wave at various times.

Fig. I1.9. Two pressure distance profiles of an initially steep pressure puise dispersing with
time. The top figure shows a shock wave passing through a material of thickness, d. In
this exaggerated drawing there is almost as much material in the shock front as in the ilat-
topped section behind. The bottom figure represents transit time that one would measure
if a pressure-sensitive device were placed at d. In typical experiments 2 similar effect is
obtained by detecting motion of the free surface after it has moved a short distance. If
the sensing device is placed very close to the surfacs, large velocities would be indicated
relative to placing the detector further from the free surface.



Fig. I1I.1. Pressure-particle velocity representation of the Hugoniot and the impedance-
match solution to reach the high and low-impedance Hugoniots from state O on the middle
Hugoniot.

Fig. I11.2. Diagram to identify terms used in (11) for calculating refiected shock loci. The
shaded area represents the difference in energy between the single-shock Hugoniot and the
energy in the shock reflected from state 1 at the volume V3.

Fig. II1.3. Diagram to identify terms in Eq. (III.5) for calculation of release isentropes. The
isentrope must usually be integrated numerically. It is assumed that all values are known
at state P;_;. The decrease in energy at V; down the isentrope is given by Eq. (IV.4).
The ratio of the difference in pressure and energy between the isentrope and the Hugoniot
at V; is equated to ~.

Fig. II1.4. Pressure-volume plot of a Hugoniot centered a: crystal density, V«, and one with
some porosity at V,. The shaded area indicates the difference in internal energy between
the two at the indicated volume and pressures. It is noteworthy that this difference is
independent of the actual Hugoniot loci, only the final state. The Hugoniot of the porous
material has a small hump, or special character at the low-pressure end. Although not
measured, such character could be caused by material rigidity and it represents the pressure
required to collapse pores or voids in the material.

Fig. IIL.5. A pressure-volume Hugoniot with terms used in the equations to integrate
temperature.

Fig. I11.6. U,-U, Hugoniots for four Elkonites. The measured shock-particle velocity
Hugoniots of mixtures of Cu-W and Ag-W are compared with those calculated by the
method mixtures outlined in the text.

Fig. II.7. The measured pressure-density Hugoniots of Cu-W and Ag-W compared with
those calculated.

Fig. II1.8. Hugoniot data for Au-Ge alloys.

Fig. I11.9. Hugoniot data for Fe-Ni alloys compared with those calculated as described in
the text.



Fig. IV.1. A type of Hugoniot curve that will produce a double-wave shock structure;
the resulting pressurc profile; and a representative U,-U;, Hugoniot. Point 3 in (A) is the
intersection of the ray from the origin through the cusp on the Hugoniot. Point 1 with the
high-pressure Hugoniot. Point 2, curve C will not be observed by some techniques since
the faster wave, U,,, will arrive first and destroy the recording equipment.

Fig. IV.2. Particle velocity vs time record on shocked fused quartz obtained from the
induced emf in an electrical conduvctor embedded in the quartz, as it moved through a
magnetic field. The timemarks are at 0.1-us intervals. The light line is an extension to
the base line drawn to show the ramping wave. The first break occurs when the shock
strength exceeds the maximum pressure of the anomalous compression region. This is
followed by another ramping wave and then another shock. The following decay is caused
by the Taylor wave in the HE. The test shock wave almost overdrives the first transition
wave.

Fig. IV.3. A schematic for the U,-U, Hugoniot for fused quartz. Note the original negative
slope resulting from the anomalous compression. The dashed section must be obtained
from experiments that give time-resolved pressure or velocity records.

Fig. IV.4. Two P-V Hugoniots and the resulting U,-U, Hugoniot. hugoniot data for both
A and B would be recorded as shown in C with the experimentation used here. In A it has
been assumed that the material does not begin to transform at the equilibrium conditions
and that it is possible to overdrive the transition pressure by an amount depending on
the initial shock strength; however, with time, the material transforms and the pressure
decays. In case B it has been assumed that the transformation begins immediately but
does not go to completion. This means that although the pressure lies slightly above the
Rayleigh ray through the mixed-phase region, the slope does not increase as rapidly as it
would if the material had stayed in the initial phase. Although A can give rise to a two-

wave structure in the shock front, B of course will not. Hence, in principle the situation is
resolvable.

Fig. IV.5. P-V Hugoniots, resulting shock-wave structure and U,-U, Hugoniots. In this
figure point 3 lies on the extension of the line through the origin and the onset of tie
beginning of the transition. In (a) part of the Hugoniot lies above the ray through the
transition zone and in (b) it lies below. Because of the downward curvature in this region
both waves will show rounded profiles, and neither will be steady in time.

Fig. IV.6. Effect of u phase change on the U,-U, Hugoniot. In this figure we have con-
sidered the case where dP/dT > 0. Here and in the next figure H versus V is plotted at
constant pressure; P versus T is along the phase line and also along the Hugoniot (dashed
line); P versus V is plotted for the phase line boundaries and the Hugoniot loci (dashed
line); and finally the type of U,-U, Hugonlot (soli¢ line) that inight be observed with the
experimental technique described here is plotted. In the first row of figures, it is assumed
that the original state of the Hugoniot lies In region I (the low-temperature phase) and
that it crosses the phase line as Indicated. At the present time we do not know of any cleer
examples of the detection of such a transition solely by U,-U, data. It is possible that
the Hugoniot could enter the mixed-phase region and finally come out again in region I.
In the second row of figures, the slope of the phase li.ie is still positive, but the Hugoniot



is centered in the high-temperature phase (region II). When this Hugoniot crosses the
mixed-phase region, there is ample experimental and thermodynamic data to show that
the Hugoniots as drawn in the P-V and U,-U; planes can exist and will give rise to a
two-wave structure as previously discussed. It is possible in either of these two cases that
the Hugoniot P-T locus will not intersect the phase line.

Fig. IV.7. Phase change with dP/dT < 0. If such a phase change exists, the Hugoniot
must eventually cross the phase line, provided that the Hugoniot is centered in the low-
temperature phase. As drawn, this type of phase change gives rise to the same type of
U,-U, Hugoniot as illustrated in the lower case in Fig. IV.

Fig. IV.8. P-V diagram to illustrate the conditions required for setting initial conditions
for the iteration procedure to determine a meta-stable Hugonlot. Here A is the original
low-density phase, and B is the derived, high-density metastable phase. C is the Hugoniot
calculated from Hugoniot B but centered at P = 0 in phase A. Curve C is compared with
the experimental data. Point 1 on Hugonlot A should, in principie at least, be established

by the experimental result. Point 2 corresponds to the calculated isothermal volume change
of this transitlon.

Fig. IV.9. Calculated recentered Hugonlots of the transformed high-pressure U,-U, Hugo-
niot obtained by varying the initlal density of the high-pressure phase. The above example
was for anorthoslite with a trial Cop of 7.5 km/s and a slope of 1.25 shown by the dashed
line. The data polnts are designated by the circles. The deviation AUap is found for each
data point, and the initial or sero-pressure density (pop = 3.9 gm/cm?®) of Hugoniot B is
found such that ZAU, =0.

Fig. IV.10. Calculated recentered Hugonlots of the transformed high-pressure U,-U, Hugo-
niots. This is the same problem as lllustrated In Fig. IV.9 except that the results of two
additional trials of Cop are presented. All three curves have been obtalned by using the

initial denslty (pop) that gives AU, = 0. Here £(AU;)? is a minimum for Cop =
5.79 km/s.

Fig. IV.11. Calculated recentered Hugonlots obtalned as in Fig. IV.10 except that two
additional slopes have been used, thus demonstrating how this varlation tends to bend the
resulting calculated Hugonlois. The dashed lines (1, 2, and 3) represent the metastable
Hugoniots that are transformed to the solld curves. All three curves fit the data quite
well. This shows that, even thought there Is a comblnation of p,, C,, and S that gives
the best fit, the experimental data are usually not good enough to warrant this selectlon.

However, the data do appear good enough to determine two of the parameters If the third
is specified.

Flg. IV.12. £(AU,)? versus Cop for various slopes and for the same probler as illustratsd
in Figs. IV.9-IV.11. The number at the bottom of each curve is the value of the slope used.
The large Increase in £(AUp)? for slopes greater than 1.5 arises from the fact thal these
require that the densities and sound velocltles be less than the assumed stable phase, and
It Is qulte Impossible to obtain decent fits of the data. Any of the fits from 8 = 1.0 to 1.5
usually give quite adequate representation of the data, and the mluli.um near 1.5 must
sometimes be disregarded for other physical requirements. Similar curves were obtained



for all thie rocks analyzed in this manner.

Fig. IV.13. Hugoniot EOS curves for one-dimensional strains and equilibrium ciates, which
control the inltlal elastic-plastlc flow in shocked solids with rigidity. These also govern the
release paths as can be seen in (b). The structure shown in (b) can give rise to wave profiles
like shown in (c) for impact experiments. The pressure difference from the maximum
pressure to the level indicated by REL gives a measure of the state of the material at
pressure but does not give enough informatlon to determine how close the Hugoniot point
is to equlllbrium. The impedance-match solution, (d) gives an indication of the type of
errors introduced by rigidity effects in a standard.



Fig. V.1. A cross-sectional view of an HE-metal driver system used for EOS studies. As
indicated a rotating-mirror sweeping image camera was used for the diagnostics. The
plastic layer prevented driver plate breakup when the plate was thin. By using various
explosives and other components a wide pressure range could be covered.

Fig. V.2. The free surface trajectory of shock loaded iron thowing the arrival of the elastic
wave, the first plastic wave and the arrival of the material in the mixed phase regime. The
breaks are quite distinct and the average velocities well determined. Further differentiation
18 not warranted.

Fig. V.3. The cryogenic system used by Dick tor measuring shock transit times in liquid
N4 and the motion of the 2024 Al driver plate. Approximately 20 pins were used ir each
measurement.

Fig. V.4. The U,-U, Hugoniot data for liquid N; measured by R. Dick. Although the large
number of data is unusual the remarkable linearity is typical of most substances. There is
a slight change in slope at about U, = 2.7 mm/us. It has been surmised that this is the
onset of dissociation N3 to other species.

Fig. V.5. Target assembly and pin holder used by Morgan to measure shock transit times.

Fig. V.6. Records for various measurements on a two-stage gun experiment. ») Time
marks generated by the projectile, passing magnetic pickup loops. b) X-ray of the sabot
and impactor. c¢) Raster an cecilloscope record of the x-ray trigger puises. d) Pin pulses
for shock transit time measuiements.

Fig. V.7. A schematic of a flash-gap type of assembly that could be used to measure shock
transit time through a shocked sample placed on a base plate. The film is exposed when the
shocked free surface of the materials under the Plexiglas block travels ~0.9 of the distance
of the gap. Since the free surface of the two materials (base plate and sample) are not
necessarily the same, their veiocities must be calculated (by methods described in Sec. Il)
and the appropriate correction in transit times made. A somewhat smaller correction is
needed in the situation described in 3 where a shim of the same material as the baseplate
is placed on the sample. The shock state on the shim must be calculated from an assumed
EOS for the sample and its shock transit time and free surface vilocities then calculated
for the correction. In the third example, C, shims of the samre material as the sample
are placed on the reference on base plate. Now no calculations are necessary if the gaps
are the same thickness. Unfortunately, it is not always possible to make the assemblies
this way. Type B are usually used, which in addition to minimize the corrections insures
that the optical character of the traces are the same over references and samples, which
minimizes film-reading errors. The thickness of the gaps and shims shown are many times
larger than actually used.

Fig. V.8. Shock-particle velocity assembly. In this assembiv a driver plate strikes the
bottom surface. The left-hand side of the assembly gives shoc'c velocities by measuring the
transit time through samples of different thicknessea. On the right-hiand side the difference
in transit time of the driver plate and the shock wave through the distance of the small gap
on the bottom of the assembly ls measured. When used with the measured shock velocity,



the driver plate velocity can be obtained.

Fig. V.9. A photographic record for a shock-particle velocity experiment. Transit times
are obtained by measuring the distance between the offsets traces and the interpolated
position where the reference would be, and dividing by the known writing speed of the
camera (8.3 mm/us). Driver plate curvature is apparent but accountable.

Fig. V.10. U,-Up, data for Iron, Cu, 2024 Al, and U-3% Mo obtained by symmetrical direct
impact measurements. (x) 2024 Al, (o) 921T Al, (*) Fe, (+) Cu, (0) U-3%-Mo alloy.

Fig. V.11. P-U, velocity data for Iron, Cu, 2024 Al, and U-3% Mo obtained from direct
impact measurements. These data cover a substantial area of the P-U, space.

Fig. V.12. Impedance-match solution. The curve labeled Hugoniot is that of the standard,
and point 1 is the measured state. The cross curve to the left represente reflected shock
states of the standard shocked from (1), and those to the right represent atates reached
by an isentropic pressure release. The ray from the origin represents possible shock states
of the material being investigated and is a consequence of the equation for conservation
of momentum (I1.40). The intersection of this ray, which is sometimes called the Rho-D
line, from detonation physics, with the cross curve at (2) gives the pressure and particle
velocity. The reflected shock and isentrope loci are almost mirror images of the Hugoniot.
This approximation, which although is usually quite adequate is not quite correct, has
often been used.

Fig. V.13. A schematic of an assembly used to obtain shock-wave EOS data. Various
views of a standard multiple sample assembly used for obtaining Hugoniot data for many
sclid materials. There are four rows of two samples each indicated by raised cross-hatched
rectangles, A flash block, a rectangular bar of Plexiclas with a small ~0.1-mm-deep, 13-
mm-wide groove, machined in it is placed on each bar and on the base plate next to them.
These blocks aiso wili hold shims ~0.2-mm thick on top of the bars, if desired. The gas
box is evacuated and filled with a gas. Xe is used for low-pressure measurements, and
Ar for high-pressure shots. A photographic slit plate is placed on the gas box lid so that
the shock arrival can be determined at varlous areas on the assembly. The shock transit
times through eight samples are obtained two are usually the standard. By using the
impedance match technique the P-U, states for the other sampies are determined. As
indicated several slits are placed over each sample so some statistics can be obtained. The
major benefit of using several slits is that assembly errors are readily detected, in particular
if a satnple or a flash black is not properly secured the apacing between slit traces will be
diflerent than its references. Although this is not the assembly used by Walsh it has baen
used for many years and is still belng used.

Fig. V.14. An enlargement of a photograpk record of a typical experiment. Two of the
samples were made of the base plate or standard material. Here they have been identified
an Al. The irregularity of the other traces is due to inhomogeneltiea In the samples. These
were rocks and soiwne of which had large grains of d!fferent minerals.

Fig. V.15. Shock-particle veloclty data used for cross checking the atandards. Here Cu
was used as the standard. The top curve is for 921-T Al followed by Cu, Fe, and U-3%



Mo. (x) 2024 Al, (o) 921T Al, (*) Fe, (+) U-3%-Mo alloy.

Fig. V.18. Shock-particle velocity data used for cross checking the standards. Here 2024 Al
was used as the standard. The top curve is for 921-T Al followed by Cu, Fe, and U-3%
Mo.

Fig. V.17. Shock-particle velocity data used for cross checking the standard. Here 2024 Al
was used as the standard. The Hugoniot of the iron was not linear but the Hugoniot data
for the other materials are. The top curve is for 921-T Al followed by Cu, Fe, and U-3%
Mo.

Fig. '".18. A schematic of a VISAR described by Barker and Hollenbach [1972]. Schematic

of a VISAR optical system currently being used. The optical paths used to obtain two
quadratures can be seen.

Fig. V.19. The results of a VISAR record of the particle velocity history of a LiF-Peridot
interface driver by the impact of an Al driver and the subsequent rarefaction from the back
surface of the driver. The figure to the left is a hypothetical velocity locus.

Fig. V.20. A diagram of the six-channel optical pyrometer used on the two-stage gas
gun at the Lawrence Livermore National Laboratory. The objective lens views an area
approximately 5 mm in diameter. The beam is split into the six photomu tlplier tubes
(PMT). Most of the system Is outside the confinement chamber so a permanently aligned

system can be used to calibrate light intensity records. This figure courtesy of Boslough
and Ahrens, 1979.

Fig. V.21. A series of radiation vs wave length data plots along with best fits to the
Planck’s distribution function. At the wave lengths sampled they claim best sensitlvity at
about 5000 K. This figure courtesy of Boslough and Ahrens et al., 1980.

Fig. V.22. Temperatures measured by Lysenga, Ahrens, and Mitchell on Shocked SiO;.

Fig. V.23. A noutime-resclved apectra obtained with a multiple-channel analyser. Concelv-
ably the jass in the trace is due to small sampling size. The average sampling bandwidth
must be about 10 nm, thus if therc vcare a sharp emission line or absorption band it might

be seen even when averaged over sampling width. This figure courtesy of Boslough and
Ahrens.

Fig. V.24. A plot of the inverse percent transmission as recorded by a microdensltometry
scan of a photographic record. The fourteen splits over the nitromethane cover a range in
radlation levels of a factor of four in seven steps. The slits over the samples cover a range
of about two. The radiation from the fuse quarts was too great because the wrong size
slit plate was used. The high-intensity-record must not be used, because It is impossible
to make a meaningful extrapolation of the standard.

Fig. V.25. The radiation of the nitromethane, from Flg. V.24, is plotted against the slit
width. The relative radiation from the samples Is matched to this curve to establish the
ratio of its radlatlon to that of the nitromethane. The radlatlon response to temperature



over the wave length for which the fiim is sensitive is used to determine the temperature.

Fig. V.26. The relative radiation of SiO3 to nitromethane plotted against the shock particle
velocity. Since U, is a function of the internal energy (Eq. II1.42) the fact that both the
fused quarts and crystal quarts data frll on the vame loci attest to the fact that both are
most likely in the same high-pressure phase.

Fig. V.27. An x-t plot with the shocks and rarefaction waves, etc., indicated. This is
equivalent to an experiment where there were target thicknesses of 2, 3, and 4 mm. The
three measured At’s extrapolate to the time the rarefaction wave first overtakes tke shock
in the target. Here at x .= 4 mm.

Fig. V.28. In most measuring techniques the data are obtained at a given location in
the material, e.g., a pressure-sensing transducer or at an interface where velocities are
measured. Here the radiation is observed at the shock front as it moves through the
sample. Both records show the pressure decrease caused by a rarefaction overtaking the
shock wave in an impact experiment. The records can look similar but they are indeed
different.

Fig. V.29. Reproductions of some records on an experiment to study the merits of some
various analyzers. Two artifacts of the shock assemblies can then be seen: 1) the effect of
a small air gap in the left-hand quarts record; and the effect of an excessively large glue
joint in the right-hand gluss record. The decay section of the analygers is different, but
the catch-up positions are the same.

Fig. V.30. Sample thickness vs catchup distance for an overtake expuriment on 2024 Al
using bromoform as the analyser. In this high-quality data set the sigma for the least
squares fit of the data was less than 0.2%. The linearity is predicted from the analysis on
characteristics discussed in Sec. II.

Fig. V.31. The radiation emitted from a layered fused quartz target with an opaque
aluminized interface and two 90% transmission alumlnized interfaces. In addition to the
shock arrivals the time of the overtake is quite clear.

Fig. V.32. Radiation from bromoform impacted by a 316 SS driver. The bromoform was
covered by an opaque aluminised cover of mylar. Partlally opaque layers of mylar were
suspended in the bromoform. The radiation increases when the shock wave passes these
layers, which like on the previous figure (V1.31) glves a measure of the shock front thickness
if the layers are parallel to the front. In additlon to the inc-ease in radiatlon a small sharp
decrease in radiation can be seen as the pressure und temp~4rature or transmission decreases
when the shock traverses the low density 8-micron-thick plastic ilms.

Flg. V.33. A recovery system used to shock load larg. samples or several small ones. A
plane wave lens inltlates the churge, which accelerates the driver plate. The one-half-inch
air gaps prevents spall of the driver. The release wave from the driver decreases pressure
in the central region before rarefactlons come in from the sldes. The momentum from the
drlver lv imparted to the lower plates. By using several p'ates, no tenslon waves reach the
region of interest. The assemblies are fired above conialners with water or on piles of sand



or both. The samples are usually found directly below their starting position.

Fig. V.34. A recovery system used by Morris et al. to study the dissociation of polymers
under shock loading. The system is unique in that the decomposition products, which
were amorphous carbon, diamond, and various gaseous hydrocarbons were 2ll confined
and their relative abundances were measurvd.
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Fig. VI.1. Histogram of the frequency of the slope of the Hugoniot EOS.
Fig. VI.2. The slope of the lanthanide Hugoniots [56].

Fig. V1.3. Linear U,-U, Hugoniots illustrating the range covered by experiments on differ-
ent materials. All the materials to the left of U, = 0 are in the negative pressure region.
Materials like Al;03 with very high sound velocities also have very large binding energies.
If one aubscribes to the belief that the siope is a strong measure of the effective repulsive
parameter of the atomic systam it is easy to visualize how lowering S increases the binding
energy as the top two lines indicate. The middle two lines represent Mg and Mo with the
same indicated binding energies whose other properties are quite dissimilar. The bottom
line is representative of Hg. Taylor demonstrated that on the us scale Hg also will support
a modest tension stress.

Fig. VI.4. Schematic of the pressure and energy typical for a linear U,-U, Hugoniot. As

indicated this material has a binding energy comparable to the energy produced by the
shock-wave.

Fig. VI.5. Rodean’s compilation of cohesive energy compared with Eq. (VI 13).

Fig. VI.6. Rodean’s comparison of cohesive energy vs Eq. (VI.13) for some alkali halides.
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Fig. VII.1. Shock-particle velocity data for porous Cu samples using crystal density Cu
as a standard. The symbcls show the average value of the fractional densities of each set:
(X) 1.0, (O) 0.88, (*) 0.71, (+) 0.71, (1) 0.64, (e) 0.51.

Fig. VI1.2. Pressure vs relative volume data for Cu data shown in Fig. 1. The symbols
show fractional densities of each set: (X) 1.0, (O) 0.88, (*) 0.82, (+) 0.71, (M) 0.64, (e)
0.51.

Fig. VI1.3. Plots of dE/dP]y obtained from the shock velocity data on porous Cu (Fig. 0.1).
The following symbols and lines used to identify the fractional densities: (O) 0.88, — - —;
(*) 0.82, — — —; (M) 0.711, — — —; (x) 0.64, — — —; (+) 0.51, — —— —. The solid
line is from the calculated gamma using the Dougdale-McDonald equation.

Fig. VII4. Plots of dE/dP]y obtained from shock data on porous iron samples. The
fractional densities of the samples are: (O) 0.89, — - —; (*) 0.76, — -~ —; (M) 0.60,
— — —; (%) 0.43, — — —. Clearly the effect of temperature or some other systematic
behavior is being displayed.

Fig. VIL.5. Sound velocity behind the shock wave in Ta.



Fig. VIIL.1. U,-U,, Hugoniot data for two rocks. These two rocks have the general compo-
sition (Mg,Fe),SiO4 with ~10% additional minerals. The olivine has an MgO/FeO ratio
of about 90% and this Morchokee Mine MgO/IeO of about 50%. In general, increasing
tke iron in simple substitution for Mg not only increases the density but also increases
the shock velocity. These records indicate that the high pressure trarsition would not be
manifested by a two-wave structure.

Fig. VIII.2. U,-U, Hugoniot data for two enstatite-type rocks. Both rocks have MgO/FeO
ratios of about 85%, both have the general composition (Mg,Fe)SiOs with about 15%
other high-density-type silicates and oxides. The data for the Stillwater Complex bronzite
indicates that a two-wave structure would probably not be present for the high-pressure
transition. The lower set indicates that a two-wave structure might exist.

Fig. VIIL.3. Pressure-density plots of the Hugoniots for various minerals compared with a
likely distribution for the Earth.

Fig. VIII.4. Comparison of some pressure-density Hugoniots for various Fe compounds
and alloys with a likely pressure-density distribation through the Earth’a core.

Fig. VIII.5. U,-U;, points through the Earth that satisfy the fire¢ requirements for the
iteration procedure outlined in the text. A single-trial EOS set was used for the whole
Earth. The calculated points wander between the two trials with the different regions of
the Earth clearly observed.

Fig. VIIL.6. U,-U, points to demonstrate how the solution converges in the inner mantle.
Acceptable solution has been found for regions B and C. In general, too large a choice for
the slope results in too low a slope for the U.-U, points.

Fig. VIIL.7. U,-U, points that have nearly converged in the mantle.

Fig. VIII.8. U,-Up, for the mantle demonstrating that there are other trial EOS that lead

to the same solution, Here the same C, was used for both trial EOS but their slopes were
different.

Fig. VIII.9. The U,-U;, solution for the whole Earth. Clearly the locus of points for each
region is remarkably linear. The negative particle velocity for the beginning of the B region
is caused by the high temperature of the outer mantle relative to the Hugoniot.

Fig. VIIL.10. U,-U, data for olivine and bronzite.

Fig. VIIL.11. Sound velocity vs density for oxides and other minerals ploted with the mean
molecular weight, M.

Fig. VIII.12. Sound velocity vs pressure for shocked lron.

Fig. VIII.13. Shock temperature measurements in Fe. Courtesy of J. Bass.



Fig. VIII.14. Sound-velocity measurements on shocked forsterite and olivine compared
with sound velocities through the Earth’s mantle derived from seismic data.
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