~III. INVESTIGATION OF THE -THREE CONDITIONS

In this part of the paper we shall investigate the valldlty of
our three postulates

(%p/oV?)g >0, NG 9
(ep/oV);, <0, (II1)

which we have used throughout in our theory of shock vaves (Part II).
Of these conditions only the' first two are needed in the general
proeof. (up to Sec, 10) the last one 1s requlred only to _rove the
stability- of shock waves agalnst any klnd of splitting (Sec. 11).

Analysis shows that none of the three conditions is required by
any general thermodynamic or statistical argument because it can be
‘shown that for each one of the three conditions there exist some sub-_?
stances for which the condltlon 1s v1olatod ate certaln temperatures
and densltmes. Tperefore we can only ascertaln the range of valldlty
of. the condltlnrs by 1nvest1gat1ng a-suff101ent numbef of dlfferent
physical statess For all s1ngle-phase systems whlch we have 1nvestr-
gated, all:-three cqndltlons have been found valld by a wide margln.
Thereforec we believe that they are valid for all 51ngle-phase systems
of any practical importance. T

The cases in which one or more of the conditions are violated all
refer to phase transitions. Therefore we had to exclude phase trans-
itions in Part II of this paper. - n Secs, 1L and 17 we shall discuss
briefly some of the phenomena which might occur if phase transitions
could take place in shock waves. A

12, The condition (azp/avz)s >0 for single-phase systems

The simplest equaticn of state is that of a perfect gas with con-

stant spe01flc heat. Then the adiabatics are given by

2
P = constant-V , (6L)
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‘where 7 is the ratio of the specific heats, ¢ /bV, and the constant
depends only on the entropy. Therefore
/52 '
. —E> = (7 +1) &, (6La)
" 2

which is certainly positive,
For most other cases it is convenient to express the adiabatic

‘derivative in terms of isothermal derivatives, For any functlon f(V,T),
we have

, (35/0V)
39, - 37), - w5, e
Here we may use the thermodynamic rélations ‘ ‘
95 . | :- -
@), - ) e
: N c e '
&), ==, (662)

where Sy is the specific heat at constant volume, a positive definite
Quantity. Applying Eq, (65) to f = p, we find
_.E> = (% - L QB)z . (67)
' (av T c (aT o
S T v Vo .
Since (ap/aV) is negative, we find that the adlabat;c modulus of COMm=

pression, —(ap/aV)S’ is always greater than the 1sothermal one, Another
dlfferentiatlon g1Ves ‘ : :

NS 2

e LB .T.a.a_% o
T op ['Pp ‘1 (32 7T a\zacvsza 2p.| .
-;;%F[—-%aava = (%) *g(s%' ﬁ--qﬁﬁw

On the right<hand side. b and ~ are ;s a4«
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S
T; hence abe 1mp11es that V is kept constnat, and vice versa. Equa-
tion (67&) may be sllghtly 81mp11f1ed by means of the thermodynamlc

relation
’ 2 oc o
SRR o g B (670)
' oT '

Then Eq. (67a) becomes
.2 .

2%\ L op_3rep Fp , 3w )
(’V'B' —vf c,, 0T oWT ~ "2 \JT
S /s Ps) 7 _ Cy

2 ac ‘o3 o OC\
T T v

av "'2' ("'Ira') Q = ‘c‘v' a‘f‘) - (68)
V , .

A}

From Eq. (68) we can easily get an idea about the terms which mlght
theoretlcally cause (2 p/aV2) to be negatlve. Beglnnlng with the last
term of Eq. (68), we have the follow1ng possibilities:

(a). The specific heat may increase rapidly with the temperature.'
Then, if dp/dT > 0, which is the- ‘normal behavior, the last term of Eq.
(68) is negative. It will be large in absolute value if, simultanecous—
ly with a large dc¢c /BT we have a small spe01flc heat Cye This points
to low temperatures as the place where (a p/av ) might be mcst likely
to become negative., The following cases of rapldly increasing specific
heat will be discussed below: ' '

(1) Ideal gases with internal degrees 'of fréedon,
such as vibration or electronic excitation.

(ii) Dissociating, but otherwase -ideal, gases (ioni-
zatlon is a special case: of’dlssoc1at10n)

5 (ddi) | Solids-atgwery low temperature, .

In cases (1) -and*¢ii), the Pirst ‘term in Eq.-(68) can be shown to be '

_ numerlcally larger than the last one, because Cy is never very small
,(at;leastrzk for monatomlc, g for‘dxatomlc gases, and so forth). In

.....

case (iii), the term" w1th'3c /BV is positive and numerlcally greater
than the last term,

(E). The spe01flc heat may decrease with 1ncre351ng volume, that

is, dc /QV <'O Thls case is reallzed for a number of llqulds. dow-

ever, from the emplrlcal data it can e3silv he chamm +hadt b 4 ic. o
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term in Eq., (68) is usually less than one percent of the first.

(c)e 'The pressure may decrease with the fémperature (ap/QT-<:0);
Whlle the modulus of compression, =3p/dV; increases with 7 (that is,

d pﬁbVJT < 0)s Then the second term in Eq. (68) is negative, Water
below 4° is an example, but the second term is again less than one
percent of the first. - | . ) _

(d)e The derivative at constant temperature, z?pﬁavz, may be
negativé.. This happens at and near the critical temperature for vol-
umes greater than the critical volume. In this case,.the:(positive)
second term of Eq. (68) more than qutweighs the first,

In all cases mentioned, .the resulting value of (O p/r)Va)S is’ p051-
tive. We shall now discuss the 'various cases in prder, )

(a). Specific heat 1ncreasing rapidly with temperature, —- (1)ngggl

gas with variable speeific heat, For an ideal gas, we - have

-
.
- >

wam, T iy
. . . L. . o R ' T ' o o L '

‘--:- . .: -. : %-g = v >0 r o i Lo . : (698.)
Cde, 2l T

. EV-‘T ()Tz 0- L . (650)

[See. Eq. (67b)1.- --Equati.c?n,-(éa') becorigs

() -3 (RS RES =1 R
, J .

The critical term is obviéusly the last one. To get an'estimate of

its value we consider a vibration of the molecules of frequency V = k&/h.

Then the specific heat is

Cy Q/T
TR (’I’ G/T 2 (702)

1

where £R is the specific heat without the vibration (/3 = 2,5 for
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linear,‘p = 3 for nonlinear molecules)., The bighest value of'the last -
term in Eq. (70) is obtained i‘or TQH 9; at this temperature the con-
tribution of the oscillation. to cV is about 0.3R, while the derivative,
Tdey/dT, is -about 0.65R., Then, if /s = 2.5, the last term in Eq. (70)
becomes ~0,030, as ‘against 3.2 for the first term. . The-negative term
is thus only about one percent of the positive one. '

It might be expected that the negative term in Eq. (70) wilY: be- '
come greater if the molecule has several modes of vibration, because o
each mode will contribute to Tdcv/dT. However, this ei‘fect will be Lo
largely . offset by the increase of Cy 1tse1f. Fbr example, for a
molecule hav1ng as many as 100 different moaes of vibration, all of .
.the same frequency~ and having‘p 3, the maximum of the negative term
Seeurs at T % 0, 129 and has ‘a value of about 0.11, as“against 2. 7 for
the positive term. Only for a molecule w1th more“t'haﬁ'TD6 (2) vibra-‘-
tional modes all of the same frequency, -would the derivative (& p/c)VZ)s
become negative at certain (low) temperatures. From this we see

that, while it is in principle possible.that postulate (I) is vio-

lated, this will never occur as the result of the excitation of vibra-
tions for any real gas. It can easily be seen that the same holds
for the excitation of the highéf"elebtronic states,

(ii) Dissociation of molecules. In this case, the exact cal-

culation would become exceedingly complicated.;-We_oan,fhowever,xget ;
a rather good approximation by remembering that the significant term
in Eq. (68) 1s the last ane and that this term is_greatest when the
spec1f1c heat rises steeply but is not yet 1tse1f ver§~iarge. This
will occur when the degree of dissociation, «, is still very low; in
fact, from our calculation we:shall find that a value of « less than
1- percent.:is most favorables - Then we can neglect © compared with 1,
but we must, of course, not neglect T 3a/OT, _
When a molecule dissociates into n+ 1 atoms, the degree of dis-

sociation is given by

n+ 1

« =KT)=An-Q/RT , 71)
(1 = )V ( ° (
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where K is the dissociation constant Q the ‘dissociation energy per
g-am, 'R the gas.constant per gram of the molecular gas, and A" is the
ratio of the "a priori probabilities“ of dissociated and molecular
statee and depends only elightly on temperature. The numerical value

" of AV is of the order of 16 ts 1o8 for ordinary densities and tem-

i . . l
- . ..

peratures. -
' With our assumption, o<<1, we have

.- _n_:
« = @V T (71a)
with
= Q =
q* HeAT ¢ (71b)
We shall need the derivatives
de N :
.. 0 = (72)
+ a -
5‘% = q % . T e, ' (728.)

Because of the large value of the "a Eriori probability" AV, we get

appreciable dissociation already for quite large values of g. If we

require (n+ 1)o = 0.00T to 0.01 (see below) and have AV = 10)'l to 108,
then

& = 10 to 362 (72b)
The pressure is given by

P =%3<1¥m> : (73)

The derivatives required in Eq. (68) are, neglecting ne but keeping

Qne,
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3;% ZRT . | (T3c)

The specific heat may be written

T ‘ of,
for : Y :cv.o ! ? gT ’ (7)
where c:V 0 is the value of the specific heat if the degree of disso-
ciation does not change, that is, essentlally the Cy of the molecule,
Putting . S oamit
oy,0 = PR | (Tha)

where f.is a slowly changing functivn of “the temperature, and using
Eq. (71b), we find

Therefore et o .o G e
3c
R
; ETV v, nqzu , (75a)
oy
37 - R I_g'{f' ¢ (n+ 12 ¢°(q- 2)J (75b)

Insertlng the results of the previous paragraph into Eq, (68),

we obtain, term by term,




(9—2\ =% %2 . ¥1+nq0L)(1+ 9, nqzu(ﬁnqa)z
6V2/—~ -V L R (n+1)qm . [ﬁ + (n+ 1)q2&]2

s

d

=

* (anu)B 2 12 (an“)Bz 3[ + (n+ 1)C12(q-- 2)°‘]}- (76)
[p + (n+ 1)q%]®  [5+ (n+1)q%] |
Only the last term is negaﬁiVe, as expected, “e know already 'that the
term TdfB /dT is harmless [see case (i)). The other negative term is
largest for large g and relatively small «. It can easily Be shovn
that the ‘maximum of thls term, for fixed q [>> 1] and varlable ¢ is .

obtained for

mrDPer iAo (76a)

Then nqe < £/2q, and the last term of Eq. (76) becomes. approximately

;' (a %” 7'2). 1L .q,..*,,%ﬂ' N -
(2 )3 T 277 YR (76b) .
2/

The highest value which g can take Tsee Eq.(72b)] is about 30, and

this can occur only for large n, in which case 2 is at least 3, and

in most. cases very much higher. .For q =30, "/ =3, we obtain for the

last term of Eq. (76), | S R o
last term'= -2-)17 BZT'S- =0.5L, 7 (76e) "

while the positive terms become 2.9, ‘The negative térm is thus less

than'one fifth of the positive ones, although we have made conditions

most favorable for a large negative term. The value of (n+ 1) be<
comes, with our assumptions, about 0.0017, Jjustifying the neglections
made (new <«1) and also the value of e used in computing Eq. (72b).

[
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The case of the ionizationiof monatomic gases maj seem of interest
because for these 8 is only 1.5, However ‘at the same time the a
priori weight A is reduced because of the -small mass of the electron,
Values of AV between 1 and 10)'l are usual, which, with (n+ 1)« = 0,01,
gives g between 5 and 14. In the most favorable case this gives
about 1.for' the negative term 1n Eq..(76) against about L for the .posi-
tive terms, ) .

As in the case of an ideal gas with varlableAe, there exists
the p0551b111ty of negative (& p/sz)S, but- only for extreme dilution
of the gas. If we con51der the foriization of a monatomic gas-which
is most favorable for negatlvé (a p/de)S, and if AV a 10h for .1 atm

pressure, we expect AV = 107" for a pressure of 10hh atmospheres (! )

. For this value of AV, and for (n+ 1)e = 10 h, we get q = 120, which-

would make the negative term in Eq. (76) Just greater than the posi-

tive ones., Thus we see again that (o pﬁﬂVz)S > 0 is not required on

statistical grounds but is very well fulfllled for all experimentally
obtainable pressures. o

(iii) Solids at very low temperatures. :The speciflc heat is given

=t

in good approximatien by- Debyels relatlon

oy = a(r/e)’ (77)
where 8 is the Debyettemperature and a a.constant., We have thus a
rapid increase of evfw{th temperature, and at -the same time we.can
make Cy itself as small as we like, in contrast to the .twp previous .
cases where Cy was at least equal to. the specific heat of translation
and rotation. It séems therefore ‘that the negative tcrm with ﬁcv/b
can be made as large as we like compared with the first term in Eq. (68)
However, as we shall see,- the term with acv/oV saves the 1nequa11tv
(’p/ov?), > 0. S s ;

We have from Eq, (77)

- . -DC ’
T I'f .
g; 5T = 3 (77a)
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hence the three last terms in Eq. (68) become

2 )
.c?.zv. &) (-2 38y, (17)

where we have;used.the“thermodynémic.felation,Eq. (66)s At zero tem— . .-
perature, the-entropy is.zero for any V; further, we have from Eq. (77)
for a given V, . : . . | L ' .«

] T R
. c - . S : : .
\' 1 o s ;
S = /; T dar = -§'CV o (770)

Inserting into Eq, (77b), the term in parentheses becomes

(3"”*%"’7 V;%?’ | (78)

which is certainly positive, because the Debye température depends on
the strength of the elastic forces and therefore ircreases upon com-
pression, )

(b) Specific heat decrea51ng w1th 1ncrea51ng ‘volume, liquids

and solids at ordinary temperature. —=- Here we may use the Tait equa-

tion of state

(V.- VMK (V. =V, )/K
p = B(T) | ° -e © T } , (79) .

» R .
. S

where K is a certain constant of the dimension of a volume, usually
about one-~tenth of\the volume of the substance, VT is the volume at
temperature T and’ zero pressure, and Vv a suitably chosen standard
volume (constant). The function B is a function of temperaturc, -in
all cases the author is aware of, it increases with T; for water it
has a value of about 3000 bars (1 bar = 1 kg/cm % 1 atm).

We have then

.2 (V. - /K .
—_g =%e >0 , (79a)
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2 (V.- V) /k
o) 1 dB (o)
ST -z e <0. (79b)

For all substances with positive expansion coefficient 3p/ST is posi-
tive, therefore the first two terms in Eq. (68) are positive. Usually
9¢ /9T is very small so that the last term in parentheses:in Eq. (68) -
is also positive. There remains the term with dcy OV, This is
"generally assumed to be zero"é/ but may actually be slightly nega-
tive, as forg/ CClh andé/ C6H5‘ For CClh at 45°C and 1 atm pressure,

we have

acv/av = 9.5 bar/deg,

o~ -~

B = 740 bars,
. dB/dT = 2.2 bar/deg,

K = 0.0600 cm>/gn,

Ve e i . TEmm e e e es T DL .o

P + OE/IV = 3250 bars,” .. iain R

Cy=.0s21 cal/gn~deg = 8,9 bar;cmB/gm-deg.
Therefore

a7 i s 206,000 . bar (gm/om”) K

T3 32 Tt PR Y Lo
' 20c, - '

T {3 5L = -12,000  bar (gm/en)?

c

v S

2/ R, ¥. Gibson and D, K. Loeffler, Journ. Am. Chem. Soc, 63, 898,

é/ R.FE.CGihernn ard DD 0 Teeeet . . v R o
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The negative term-is thus:sé:e'n to be only about one-seventeenth of the
leading (first) term. It is also_' clear from the hature of the. quantity
acv/av that it’ cénnot be .very large because otherwise Cy would reaé,h '
exceedingly high values for hlgh compressmn. Co e

(c) Pressure decreasing with temperature, water belew L°C. —— Be-

Yow 4° C,/water has a negative dp/dT., The expansion coefficient at

(o] .
0%, ist Carliean,

1

(GV/dT)p a3 e 3,1 x 10"5 cm3/gm.deg.“ o (790)
The.. characteristic pressure B extrapolated from kef. 5§, is about
2750 bars, while =0, 137 chn /gm. Therefore

'\%}pv ’,Tli'(%}f)p = ~0,62 bar/deg. (79d)

Further, dB/dT % 10 bar/deg (likewise extrapolated), so that [see
Eq. (790)] | S
azp/aTJV " a T0 bar-_-gm/cmB-deg.

The second term in Eq. (68) becomes then, with ey = L2 bar-cm3/gm-deg,

2
3T dop o 3,2
- 6—; 5% _%QV& = ~ 850 bar (gm/cm”),
while the first term
2
3—12)- 2 % = 1).15000 bar (gm/cm3 2,
Ps!

AN | G -

(d) Derivative at constant temperature, azp/ch, negative;

ne].ghborhood of the critical point—=. 8/ On the critical isotherm we
have (Op/dV)T = 0 at thé critical volume and (Op/OV)T < O for larger

ZfDorsey, Properties of ordinary water substance (Reinhold, 19L0),
p. 231,

§/ I am indebted to Dr. G. Placzek for the calculations reported
in this section.
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volumes, so that (c)zp/c)Vz)T is negative at volumes somewhat above the
critical one. This contribution may be compensated by the second
term of Eq. (68):. -(c)p/c)T)V is posit?lve‘far a gas, and azp/g)Vc)T is
negative, that is, the modulus of compression, - op/dV, increases .
with' To T s ‘

The caleulation is simplest’ if we use reduced temperatures,::

volumes,  and pressures, namely, . S S A T
i ] V | | T. . ' . LR R I Tt L
T veEy . TApTLoUN !-::pB-.'...:‘,’... RS -_(80)
[ c, . .. Te .
I T F e U

where VC, Tc’ and p, are the critical volume, temperature, and pré§§_ure,.""

According to Van der Waals' equation,

.

,pcvé.a % R?c ’ ‘ (80a)
and the equation itself has the form ' -
- T =7 7 e T, (80b)
Ve= Vv :
3
The derivatives are »* = &7 "¢ :
a2n> o6 % 18 (80c)
. 2 R Gl = S
(r)v 3 kv - l\)3 ;E
) v 37
Logamy L8 1 .
' (f;;) i S Hr A S (80d)
., v -3 o

-

u

r 2 ) ac
(-’Lﬂ> 0.; therefore [sce Eq. {6Tb)] 'a_vl =0, (80e)

(8of)



; perature,. and to be given by AN s

,The f:crst two terms in the square bracketa.rlse from (a p/aVZ)T, the
th:.rd sterm 1n Eq. (81) represents the second term in Eq. (68), an

" the last one ¢omes from ‘the’ fourth term in Eq. (68). The third
term :m Eq, (68) _is 'zero because of the special form. .of the Van der T
Waa.lsl equa'blon [see Eq. (80e)] the last term in Eq. (€8) has been
assumed to be zero, that 1é "c is assumed ‘bo ‘be 1ndependent of tem~

st

% e

Y

| ._c':-_ﬁR.“ ; | (81a)

. - “e . T S . e
1 . . . . . ce L R S A
~

The :z.sothermal derlvat:.ve, {3 p/éV?')T, -that is, the first two
terms in Eqe. (81), is negatlve 1f ‘

: '- | SEEEE S 27 (v-' ) ‘ ' 81
k- -T- ) ..-' ' . p ?*r - . ( ?
The maxmum of 7, ? is obtalned for v = h/3 and has the value -
| 2187 h -

-For a given ¥, the substance is a gas only if 7 is greater than a

“ture for v = }/3 124

s
&

certain 'Z' while for lower temperature we would obtain an-unstable

states, If the Van der Waals! equation is:used, ’ thé minimum ‘tempera-

%, (L/3) = 0.9838 . I

For- actual gases, ?g is even higher than the value given by Van der

7 From Kuenen, Zustandsgleichung, 1907, pe 9L (accordine tao a

+ahle AT et kY v .
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Fig. 3. Diagrznm of a Phase transition.
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Of course (O p/éV ) will also have discontinuities at the two
boundaries, and we wish to find out the sign of these dlscontlnultles.
In the pure phase 1,  we have. from Eq. (67)

.~

f__rz . op)
\ V 5,1 (av) V’1 ("“T"'V ;" (82)

In the two-phase region, P is a function of T only and is independent
of Vo Therefore

(Q—-DJ-\‘ .. T {’.gE) ’ (822)
\¢r SM CVI\h \ ’

¥
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where the subscript M refers to the mixture of the two phascs,
and total derivatives, like dp/dT, refer to the phase boundary, The .
Clapeyron equation gives

dp _ 45 _ Sy = 54

— s
Y A

Q,

(82pb)

where AS and AV are the dlfferences of entropy and voluue between the
two phases at the temperature T

The quantity most difficult to calculate is Coue If the volume of
themixture is to be kept constant while the temperatu.-a changes, the
concentration of the two phases must change. If X is the concentration

of phase 2, the volume of the mixture is

V=XV, + (1 - x)v1 , . (83)

where V2 and V1 are the volumes of the pure phases. Therefore, if

the volume is to remain constant with chahge "of temperature, we have

dv
1 dav 4 dx o .
- t X3 T gpev=o . : (83a)

Since we want to con51der a2 state near the phase bound ry, X is neg-

ligible. Then the spec1f1c heat of the mlxture becomes
dE . .. dE_. . ﬁv

v

= OE\ = 1 -.‘dX‘ oo Al .,AE,'.‘- y SRS L ..
CVM <CJT dT * daT ok dT ~ AV dT ° (8)_1)

The derivative.d§1/df;can5be expreséed asAfoiIOWS:

dE N dv,

1 _ (9E oK
- - <5-_»>v,1 - (?)T.i = (8Lia)

(Z) () -» (61)



and

TAS = AE + paV (8ke)

and remembering Eq. (82b), Eq. (BL) becomes

CoerotfeR) '
°vw = Cy,1 *T g [(aT)V 1 dT] . -~ (8la)
Now, in analogy to Eq. (8ha) we have
d > Uy : . ‘
3% ) (5¥) (;V'T 1 Er_" (Blie)

therefore Eq. (84d) reduces to .
) 2 N .
- . . _ldV
y o (2 1 . |
' °w = Cy,q =T (5@)1, 1 (E‘I"‘) . (85)

Since (6p/aV) is always negative, Eq. (85) shows that the SpeCIflC
heat of the mlxture, near the boundary,  is- always ‘greater than that
of the adjacent pure phase. '

Now let us calculate the dlfference between the values of (ap/bV)
for pure phase and mixture, or rather this- dlfference multlnlled by

c

8, )" 8,88 oo, ]
- (85a)

3 -

The quantity in thé square bracket can be transformed, using Eq. (8Le):

T, -/ v,1 \

<-n>[ - @] ()2 ), 0 (5

. .
()p - ka%) | ?ﬁl x [2@%) + ’\‘l‘é\ p d—l (85b)



S = 8 e e et et | 2

- =58~

St emabas m e e h v pen e v -

The second term in Eq. (85b) cancels the next to the last term in
Eq. (85a)." The remaining terms in Eqs. (85a) and (85b) give a full
square, and we obtaln . R

), -,
s1' V1 Sy

—

—ly

c dT

v, 2
J1e Lo 2P } o (86)
+ °
L Cu ),

’

Since Cap/aV)T is always negative ‘and CV 1 and‘é{]M always positive,

the right-hand side of Eq. (86) is always positive; therefore
) s [ '
>:(. > o - L (86a)

We have derived the result [Eq. (86a)] without any assumption re-

garding the relative magnitudes of V1 and V2, or S and Dy The re-

sult will therefore be valld for both boundarles of -the two-phase

region,

We find therefore:

At the boundarv between a two-phase reglon (1n the p,%—

'dlagram) and a 51ngle-phase reglon the adlabatlc COmM=-
pre551on modulus, - Gap/aV)S, w1ll alwavo be greater
for the 51ngle anse thdn for the mlxture of the two

Ehases.
We are interested in the sign of the second derivation, (62 /8V2)

.~ ory more correctly, .in the 51gn of the dlscontlnulty of (ap/aV)S when

'we-fOIJQW'the'adlabatlc'in the.directlon ot 1ncrea51qg volume V " This =

- sign Will depend on the direbtion in which the adiabatic crosses thé

?boundary between the two—phase and one~phase reglons' If adiabatic
EE sron w1ll.lead tq. the phase tran31tlon then (ap/BV) will, in-~—.:
crease- dlscontlnuously as the adiabatic enters the two-phase reglon°
Then (bzp/bvz)s is positive (infinite). at the boundary, and postu~
late (I)eremains true, " Ir, however, adiabatic compression leads from

the pure phase to the mlxture of two phases, Gﬁp/&V)S will decrease
bt ———

dlscontlnuously“at the bpundary if-we:proceed in the dirrction of in-

.
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creasing volume, Then (a p/OVz)s is negative at the boundary, and
condition (1) is violated. o " . |
The transition between a condensed phase and the vapor has gen-
erally the property that ad1abatic expansion leads to the phase trans-
ition, both if we start from the condensed phase and if we gtart from
‘the vapor, ,The former is rather obvious since adiabatic expansion of
a liquid or solid at low pressure is almost identical with isothermal
expansion, and will therefore ultimately lead to evaporatlon. The
iother .part of the statement is a well-known experlmental fact: adia-

batlc expan51on of nearly saturated vapor leads to cordensation (prin-

ciple of cloud chamber) , Therefore condition (I) is generallv satis-
A ————
fied for evaporatlon and condensatlon,
On the other hand, for transitions between two condensed phases ~=
liquid and solid, br two -solid modlflcations ~- the adiabatics usually

run similar to the isothermals; that is, proceedlng in the direction
of 1ncreasing volume, the adiabatics start in the denser phase, then
pass into the two-phase region, and finally into the less dense phase,
At the boundary of the less-dense phase, (Op/OV) will therefore de-

crease discontinuously and condition (I) will be violated,

Generally, the direction of tue cr0551ng of the boundary can be
deduced from thermodynamic quantities. Let us consider the boundary
of the phase of smaller density. Under which conditions is postulate
(I) still satisfied at this boundary; that is, when do the adiabatics
go with 1ncrea51ng volume from the dilute phase into the two-phaSe

region? The condition for this is (see Fig. L)

dav

OV 1
—_— > —, 87
(C)P>3’ 1 dp (87)

the total derivative referring, as usual, to the equation of the phase

boundary, Ve have

IV OYA OV fOT .
(‘5—5’)8,‘. i (ap \T 1 ’ (:T)p,l (35>s,1 ’ 17)
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If the | iexpansion, coefficient of the dilute phage, (av/aﬂ:)p : is posi-
tive —= and we,do not know any exception from this -— Eq. (87) is 3
equivalent to '

-~

~

aT\ - dT C
(__ gL, (88)
3v/s,1 @ :

that is;‘the'temperathre must rise mofe fépidi&ijE 3diaba£ic compres-—
sion than for compression along the phase boundary. For -dT/dp we have
the Clapeyron equation (82pb), whereas
: 35/9p) LTl T
oT ‘ T,1 T av)
— - - T e—— 8
(op)s’1 = (35/5T) c g ( 1 ’ (88a)

Py 1 b,

using a well-known thermodynamic relation. Then Eq. (88) becomes

L ov LV .
, - T(’ST) > Cp’1 Y- I - - (89)
) : P, 1
which is the desired condition, S SR

If phase 1 obeys the ideal gas equation, we have

.'V .- R ...' :

14

so that Eq. (89) reduces to
AS > ¢ . 89b
iy (855)
This is ordinarily fulfilled w1th a wide margin; for example, for water
¢
at 100° C, a5 =6.05 joule/gm~deg (Dorsey,z/ p. 616), vhile c ® 2
joule/gm-deg (Dorsey,] p. 10i). For solids =nd liquids. on th. oth.r
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hand, (JV/OT) ) is usually quite small and Eq. (89) will,

in general,

not be fulfilled, For example, for the transition from water to ice

VI'we have at BQOC (data from:Dbrseyz/)

P = 104250 atm, [Dorsey,
(%%j. = 3.3 x 107k cmB/gm-deg, [Dorsey,
/p.
Cy = 1e0T2(1 = 0,210) = 3,22 Foule/gm-deg .
at LO° and 10,250 atm, [Dorsey,
I PR LT IR IR

.. %31 joulefgmedeg at 30°. | .. ...

- %% = 1.O‘x'J;§‘baf-gm/cm3.r:a'»- B -;[Dbr;é;;
Therefore e ‘ Lo
e, = ey = 3.3 bar-cmg/gm-deg é‘OTB%??pu;e/gm—deg,
o5 = 3.L joule/gm-deg,'_ ‘1;y i s et
AS = 1,09 joule)gm—deg,. f:;; | [D;;sey:
| AV = 0.0663 c;3)gm. R (Dorsey,

AInseLtingftheseﬂvaluesrintorEqa'(89)~we'get

e~ -t
~

\ -
T 5% = 0,100 cm2/gm,

AV 3L x 0,0663

°p B oo = 0,21 cﬁB/gm.

po'h67]

p. 216]

Pe 617]

jo 613]
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Condition -(I) is therefore not .fulfilled at the boundary between water
and water + ice VI, : ‘ e o
On the boundary of the denser phase, .the condition for the wvalid-

ity of condition (I) is reversed, as can easily be seen. We have then

instead of Eq. (89) : - Do
A N ‘
T (5T> <'Cp,dense_ZS * " : (90)
"~ "p,dense

For evaporation, this is practically alwayS'fulfllled because AV is
almost equal to the volume of the vapor and therefore very large com-
pared with the volume of the liquid or solid, which in turn is large
compared with TaV/aT On the other hand for tran51t10ns between con-
densed phases Eq. (90) is not always valid; in particular, if AV/as
happens to be small or negztive for a transformation, so that Eq. (89)
is fulfilled, Eq. (90) will in general not,be'fulfilied. This is the
case, for example, for the transition from ice I to water ggr which
AV/45 is negative: then condition (I) breaks.down at the boundary of
the denser phase, that is, of the water,.

With possibly a few exceptions, we can therefore state'

Condition (l) will break down for transitions between two

condensed phases at one of the two -boundaries between pure

phase and mixture. Condition (I) will remain valid for

evaporation and condensation. v

i
- .

1he Consequences of the breakdown of condition (I) at phase bovadaries

" If we compress a liquid adiabatically, we finally come to the
phase boundary with the'solld. As we have shown in the last section,
the derlvatlve (a p/bV )g will in general be negatlve .(infinite). at
one of the boundaries between pure phase and phase mixture, For
water, this occurs at ‘the boundary between liquid water and the mlx-.
ture of water and 1ce VI, Theref.re, if the phase transition is not
forbidden by its long rtlaxatlon time, 2ll proofs given in Part II

will brenk down
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It is easy to show that the negative discontinuity of (Qp/aV)s
will actually have serious consequences for the thneory of shock waves,
Consider 2n initizl state V1,$1 close to the phase boundary, but still
on the side of liquid water. Then we may neglect the change of Qap/av)s
from V1,51 to the phase boundary; moreover, the shock curve will cross
the phase boundary at an entropy SC very close to S?’ and at a cer-

tain volume VC < V1. For the state VC’SC’ we have very nearly

5 . (91)
AR A AP

(s

6p ,Pc 7 P1 | 28)
s’
o e g

where the subscript L refers to the liquid. ‘If we then go a.small -

distance into the two-phase region, we have from Eg,.-(31) = -

o

\ P T i
av = o~ t . to- s (918' ) :
) 2T, = WEpAS) . v .. .. (912)

"gsy - 4p - Av(ap/av)SM
d

where the indcx M refers to the mixture. .Neglecting = AV in the de- .
nominator and inserting Eq. (91), we find

How we know from Eq. (862) that R

e (ap/aV)SM L R I

Cp/ang <! - s (922)

since (épﬁDV)S.is negative. Therefore Eq, (92) is positive; that is,

the entropy will decrease with further: compression, in contrast to

our theorems in Secs. 3, L, and 7. Since we have assumed that S is
very close to 31, the entropy will soon fall below S5... Therefore the

C
ccapressiontl shock waves will become unstable. -
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The solution of.this diffieulty seems to be that there will be

two shock waves proceeding in the same direction. In the space be-

tween the two shock waves the state of the material is given by VC’SC’
that is, the state lies just on the phase boundary. Behind the sec-
ond shock wave the material is a mixture of liquid and solid., (There
may, of course, ‘be some question whether such a mixture can occur be-
hind a shock wave.) 'The second shock wave moves approximately with
the velocity of sound chagacteristic of the mixture and will there-
fore remain behind the first wave which moves neirly with the veloc-
ity of sound of the pure liquid. This result is in striking contrast
to that found in Sec. 10 for a material obeying conditién (I): we
provedthat for such a'material there can always be -only one shock
wave starting from a'given point in a given direction.

As the difference between the specific volumes in front of the
first wave (V1) and behind the second one (VZ) %ncreases, the ve}g;ity
u' of the second wave will increase, following.ihe ordinary laws—
developed in Part II, with the state V SC playing the role of "ini-
tial state." The velocity u of the‘flrst shock wave remains constant,
Ultimately, u! wili become equal to Ef Suppose this happens‘fbr
V2 = VD’ P, = Pps then VD’pD are éiven by

R a2 PDTP PP 2 o

£ a V. u (93)
C Vb - VD V1 - VC C'

(u' and u are velocities relative to the material between the shock

waves) , If the volume V2 is decreased below VD’ we shall again get

one shock wave, with state 1 in front of and state 2 behind the shock

front.;;TpgnspatawpD,YD Satisfying Eq. (93) may occur either in the
two-phase.region or may lie already in the pure dense phase (in our
case, ice VI), TR

] . « .. e

For the two separate shock waves, the stability considerations

= e —— oy - ——

of Part II will all be valld because in the llqu1d and:in the mix=

Sie .-

10/ .. o
19/ We have not proved that condition (I) is fulfilled in the

two-phase region, but we believe this to be true.
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ture separately condition (I) is fulfilled. Likewise, the procfs of
stability will hold for the single wave occurring at pressures greater
than Pps in this case, the theorems may be proved by.starting from
state D and continuing along the shock curte to higher pressures and
entropies. P o '

Thus far we have considered an initial state V1,S1 very close ‘to
the phase boundary. On the other hand, the shock curve may cross a
phase boundary at a density and entropy far above those of the initial
state. Then it may easily happen that the single shock wave will re-
main stable even if the state behind the shock wave lies beyond the
phase boundary., If uCé is the shock-wpave velocity at the point C at
which the shock curve belonging to state 1 crosses the phase boundary,
then the condition for the single shock wave to remain stable is that

Ueo be smaller than the sound velocity in the phase mixture; that is,

m=, <|@, (o

[see also 'Eqs. (31c) and (31d)}. Equation (9k) may ‘-be fulfilled for

large 'shock waves because their velodity, with.respect to the medium

- C behind the ‘wave, is known to be considerably smaller (Sec.’'9) .than

the sound velocity in that medium; that is [see Egs. (6) and (10)],

pC- -

&, ] S (ke

Whether or not Eq.(94) is true for a given 1n1tlal state and a
given phase boundary must be investigated in each partlcular case. If
the 1n1t1al state is water at 1 atm and the phase boundary to ice VI
is crossed at 30°C , We have (see p. 62) p = 10,250; further (Dorsey,Z/
ps L6T) Vy = 0.8055, V, = 1.00, p, = 0; therefore

Po - P T
VC - V1 =2 52 600 atm~cm /gm = 53, 1,00 bar-cm” /gm. (9ub)
1 C

5
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The data for the calculation of (ap/r)V')su are mostly given on page 62
of this report; we -have [See Eqs. (82a), (82b), (8ke), and (841

d -
F = 2 = 16} bar/deg,

st

dV‘] 1 3 3 . H
I ™ 1e2 1077 cm’/gm-deg, {Dorsey, p. L67]
cy q =31 bér-cmB/gm-deg; ' [This reporf, p- 62 ] }

Sy = 31 + 303 x (1.2 x 1072)2 x 10° .

s 75 bar-cmB/gm-deg- [This report, PP.57, 62 ]

-(%8) a %%2 x=16h2 = 108,000 barqcm3/gm. [This report, Eq. (82;)] (9he)
SM ‘

This is greater than Eq. (94b) so that Eq. (9L) is fulfilled: There—
fore, even if the transformation of water to ice VI cou'@ take place
in shock waves, the theorems of Part II would remain va2lid. (This holds
if the ihitial state is at 1 atm pressure; if we started from a high
pressure, let us say 8,000 atm, we should obtain two shock waves as
described above,)

We thus get the. following picture. If the initial state V1,p1
lies fairly close to a phase boundary, there will be a region of
"final" pressures P, between Pc and pr[see Eq. (93)], for which two
shock waves exist behind one another. In this whole region, the
velocity of the first wave remains constant, equal to that for Py = Pge
For greater final pressure (p2 > pD) there will be a single shock wave
whose velocity increases with increasing Poe If we now move the- ini-
tial state farther away from the phase boundary, the,region,fpom.pc
to Pp will become smaller and will finally disappear.

This result may be applicable to extremely large shock waves in
solids, As we have pointed out,é/ a solid under compression and ex-

&




tremely high temperature may not go over smoothly into the quasi-gas=
eous state; in other words, there may be no critical point for a solid.
However, the phase transition, if any, will occur at such a high pres-—
sure that the single shock wave will almost certainly rémain stable, -

The double shock wave will never occur for gases, for we have
shown in Sec. 13 that a vapor Jjust on the verge of condensation will
be removed from the phase boundary by adiabatic compression. There=-
fore a gas under any amount of adiabatic cempression will always re-
main a gas, and this will be a fortiori true under shock compression,
which leads to an even highef temperature., Therefore, for gases,
whether ideal or not, the results of Part II are valid.

- We shall now turn to rarefaction waves. Consider as initial
state V1,S1,a state on the high~-density side of a phase boundary at
which condition (I) breaks down, so that adiabatic expansion leads
from V1,S1 across the boundarye (This can occur only when the initial
state is n mixture of two condensed phases.) If we follow the shock
- curve to larger volumes, we can see from an argument exactly similar
to E&s. (91) to (92a), that the entropy will first decrease to the
phase boundary and then increase., We thus obtain the possibility of

stable rarefaction waves of finite amplitude. In fact, if we tried

to work with infinitesimal rarefaction waves, those corresponding to
the change from the initizl state to the phase boundary would travel
with the sound velocity of the mixture, while those corresponding to
the further expansion of the pure phase would travel with the greater
sound velocity of the pure phase, which leads to a contradiction.
Thus we not only‘can but dcfﬁally must have a rarefaction shock wave,

With increasing cxpansion, we shall come to a point V, »Pg at
which the velocity of sound in the pure phase has dropped to a value
equal to that of the rorefaction shock wave. For any expansion be-
yond this point, wc sh211 get 2o rarcfaction shock wave in which the
substance expands to the volume VE, followed by a train of infini-
tesimalwaves of further rarefaction.

As the initizl state V1,p1 is removed from the phase boundary,
the point VE’pE will move 2lso; we have not investigated in which

direction, If the initial state is in the purc dense phase, there

3
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must still be a rargfaction shock wave since the rarefaction still
cannot be accompliéhed by infinitesimal waves, because the sound veloc-
ity in the pure dilute phase is greater. than in the phase mixture,
It does not seem obvious which pégt.of the rarefaction is accomplished
by a shock wave and which part by infinitesimal waves. It seems
reasonably certain that there will be infinitesimal waves in which the
material is expanded down to the boundary of the dense phase; then
possibly a shock wave will follow, which carries the material over the
mixed region and into the dilute phase, and this may be followed by
another train of infinitesimal waves. But it may also be that the .
shock wave "starts" with a state in the region of mixed phases. In
any case,, these, rarefaction shock waves can. start-only from initial
states-of'%ery high pressure and can occur at all onily if the phase
transformation is rapid enough to take place'in’thé shock wave,

-The- strange phenomenon of raréefaction shock waves will not.occur

for gases, nor for liquids or solids initially -at. atmospheric or othcr

low pressures., By adiabatic expansion we obtain in each rase a mix-

ture of gas and condensed phase;, ard we - have shewn-ln Sec. 13 that

" condition (I) is valid for the transition into thls mixed phase, both

from the condensed and from the gaseous state.

Y

15, Condition (II): VEPAE)y >=2

Conditlon (II) is automatlcally fulfllled for all substances with
a positive expansion coeff1c1ent these 1nclude gases as well as prac-
tically all liquids and solids. ‘Je need only investigate the case of N
negative expansion COfolClE,nt of which water is the most notable ex---
ample. .

(3) Liquid water, ~— The greatest negative expansion coéfficient

is reached'for 0°C and 1 atm pressure. (At lower tempefatures water
is stable only under higher pressures, for which the expansion coef-
ficient becomes positive.,) The value of dp/dT for 0°C was given in
Eq. (79d) and is ~0,62 bar/deg. With o, = L2 bar-cn>/gm-deg, and

V-=a1cm /gm, we get
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as compared with thg limit ‘of -2 set :by condition- (H) v s
(b) Ice at extremelz‘lOW'temperatures. -- A relatively large

.negatlve expansion coefficient was found by Jakob and Erk for.ice at

extremely low temperatures (Dorsey,?/ pe 473). At -250°G, the linear.

expansion coefficient is =61 x 10+ If we assume the cubic expan-

sion coefficient to be three times as large, we have
1 [oV ~6
g =7 (5r) = =183 % 1070, (95a)
o p

where v [a 1,09] is the specific volume at 0°C. The compressibility
has not been measured at these low temperatures, Near the melting
point, the.experimental results differ widely (Dorsey,Z/ Pe LT1)e.
Bridgman - finds 37[-~-t(ﬂ/vb)(ay/ap)T]nto'decrease from 33 = 10“6 at
0°C to 19 x 10’§-at -3OQtand.18.x:10’6;at rTSO, while Richards and
Speyers find 7'as low: as:;312 x:no'é atfb7°aT If we assume the last-mehe -
tioned figure for =250°C, we. get - ‘ '

-6 e :
P 1843 x 10 ) ) :
_¥ — — = =1,5 bar/deg. (95B)
o ‘_‘_].2;',(__10?@ L

' The speéific heat, accordlng ‘to Pollltzer (see Dorsey, /p. h79) lS‘
1428 bar-cmB/gm—deg, therefore

-

%

vé’f“nor-m‘:s --t2s, (95

which is:of the same erder of magnitude, but smaller in absolute value;
than the value permltted by condltlon (I1).

(c) Melting ice, = The largest contraction w1th 1ncre351ng energy

is found for melting ice I. From the Clzpeyron equatlon we have

=
1 ’
2]

: . (96)

where p is the melting pressure at temperature T. The entropy change

from ice I to water is (Dorsey,Z/ pe 617)
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. 12.2 bar-cm’/gn-deg at 0°C,

>
w
u

= 9.55 bar-cmB/gm-deg at -20°C.
The change of volume is
‘ ‘ | 3 o)
AV = =0,0900 cm”/gm at 0°C,

=l L = =0,1313 cm3/gm at -2000.,

Accordingly, .
ap . T>-Q 1
o =136 bar/deg at 0°C, l
Y (96a)
= =73 bar/deg at ~20°C, J

These vilues are very much greater.than.ﬂp/BT.fqr wrter at O?Q, which
we found to be -0.62 bar/deg [Eq. (8Ld)]. 1In fﬁét, if the specific
hent Cy of the mixture of water and ice were betwcen the spe01f1c heats
of water (L2 bﬁr-cmB/Heg) and of ice (20 bar-cm3/deg), condltlon (II)
‘would be violated by a large. amount. _ ‘

. Actually, we know from Eq.‘(BS) that Cy for the mixtufe is fgrger
than for the pure phases. It can easily be shown that CVM is smallest
when the mixture contains mostly ice; first, bacause the Cy of pure
ice is smaller than that of pure water and, second, beccause the volume-
change dV1/dT, is also smaller. fie have

- 3 )
Cy ioc = 21415 bar-cm”/deg at 0°C,

]

,19€59.bar—cm3/deg~at4=20905
[ -3 3 } [®]
dV,/dT ® 3,5 x 107~ cm’/gm-deg at 0°C,

0.8 x 107> cn’/gu-deg at -20°C;

44
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“'-JP/OV %) x 10h bar-gm/me at 0%,

% 10,5 x 10)'l bar-gm/cm3 at -20°C.

»

Therefore from Eq. (85),

Cyy *21 1542735k x 10 (3.5 x 1073)? = 156 bar~cm/deg at 0°C, (96b)

.

= 19,59 + 253 x 10,5 x 108 x (0.8 x 1(5-‘3-)2=36.5bar-cm3/deg at -20°C. (96c)
Therefore
apy . _V_(dp\ _ _ 1.09 x 136 _ _ 0
V(jg)v = E;i (deV 15— -0,95 af 07C, (96d)
and
v (B .- 1.06 473 = =2.12 at -20°C. (96e)
("E)v 36.5 o °

The last-mcntloncd v“lue is just slightly below the limit set by con-
dition (II), the dlffercnce being within the probable error of measure—
ment, of 4V /dT It scems therefore that meltlng ice forms an exception
to condltlon (II), but that this condltlon is fulfllled for* pure ‘water

as well as for purc ice, and probnbly for rost other substances.

16. Condition (1II): .(sp/eV)g <O

Condition (III) is obviously fulfilled‘fsr ideal gases-because for -
~these gases constant energy is equivalent to. constant temperature,
and the isothermal value of Op/@V must. always te negative;

The condition is fulfilled a fortlori for practically all sub~
stances for which the internal energy 1ncreases with isothermal ex-

pansion, We have ' K P LT

(aE/éV)T

G% ’\av (g%)v P ¢ (97)

v
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If (ap/BT)v">'orLWﬁich is true.for .almost all.substances (gxcept water
below L° C), the last term is negative for-p051t1ve (3E/3V)T. There-

fore

< <0 - (97a)

if . o . ] CeE e, - . toL N NI A
. b . aE\ . P P -‘.." ' ,‘ " . B
B oo T ow

-~

A great many substances fulfill the condition (dE/bV)T > 0.

Somé of the most important are the follow1ng. R DT

(a) Dlssoc1at1ng gases..-— The dissociation increases with the

volume at constant’ temperature, and the dissociation increases the
internal energy. This case is the most 1mportant of 'all because con-
dition (III) is required (Secs 8) to prove that the energy has no
extremum it the’ part of the shock curve beyond the minimum- of the
volume Vé, that’ is, at very high temperatures at which dissociation
progresses rapidly.

(b) Any fairly diluté; imperféét-gas..-- . The attractive forces
(Van der Waals' forces) must be tdker into account while thé repulsive

forcés are unimportant. Since the attractive forces decreéase with:
increasing volume, the energy must increase with V. An example is''
provided by a gas obeying Van der Waals' equation, namely ~° =~ -

# es oy

\"

-(p¢%>(v-b)=RT. (98)

From the thermodynamic relation

(&), =7 (38, - » (582)
- \eVip v
we find
OE a
a >0 . (98b)
7), |
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(c) Most solids and liquids at ordinary temperatures. - From

measurements such as those of Gibson_ and Loeffler, /'aE/av turns
out to be positive for practically all liquids at ordinary temperatures,
The only notable exception is water below hOC [see Sec., 16(c)]e The
argument given in the literature for the "normal" behavior is the same
as that given in Sec. 16(b) for gases, namely.that the most important
volume~dependent contribution to E arises from attractive forces,
which give a positive dE/dV, This argument may be expected to hold
for''solids as well as for liquids. g

Other substances still fulfill condition (III) although G&E/QV)T
is negative.. Examples followe - i ,%i.

(d) Water below L°C. — The (bp/aT)V at zero.pressure is negatlve;

so that Eq.- (982) .yields a negative (OE/aV)TI;L??H?X??{_EE?Ce at the
same time Op/dT:is pegative, the last term of Eq,-(97) remains:. nega—
tive.: It.is true that:there is a region of pregsures for:whlch,QEAQV :
is still negative.while 2p/dT is already positiveq[because of the -
term -p.in:Eqe:(98a)],. but-in this region the last term in-Eq. (97)-is.
entirely. negligibls:¢ompared with the first, namely about 1.part in
10,000, ' .

(e) Solids:at:low.temperature. ~- The; last term in Eq. (97) may

ce m——a

~ be:expected to be:large: and_p051t1ve,-- that,;s, unfavorable,for, re~
lation: (III) — if ¢y-is:small, Op/oT positive, and p large [see Eg..
(98a)]. All these conditions are fulfilled for solids at low tem~ ... :
peratures The value of Cy is given by Eq. (77), namely -

~t

oy =a(t/e), - (77)

-

and goes to zero for zero temperature, Fortunately, ap/bT also goes

to zero; we have from Eqs. (77c) and (77)

\\\\\ DRI o
2 _as_1°va 1 21558
F=F-3w 3oy T - (99)

This expression is positive because the Debye temperature decreases
with increasing volume. OSince @ is proportional to the frequency of
the vibrations of the crystal lattice, therefore approximately
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0 = bV_1/?a R i“ S .Qé9a)

where b is a constant dependlng on the- crygtal structure but. not .on v,

while a is the velocity of sound namely

\B

2® = VPEpRV), . (99b)
Therefore ; .
Py, e
o1 2
—g—%—-- -3-7 W (99¢)

Inserting Egs. (99), (98a), and (990) into Eq. (97) and neglectlng
T(op/ST) against P Wwe obtain :

. r 2
| i p(Fp/av), |
CIAN ) AU I | T _2p, ; (~ 00
(v)E (oV)T L 3 (p/aT)E J 5% )

-

The last term is certainly negative (and small) In order that con-
dltlon (III) be fulfllled it is therefore sufflclent that the brack-
et be p051t1ve. This is almost certainly the case because sollds '

very nearly obey the Tait equatlon. Choos;ng Vb =V T’ Eq. (79) be-

comes ) . . .
" V - 0/K ] | '
p=B[e( °. -1] "~ - (100a)
. E:.(V - V) K B S
(Qg) = - (B/K)e © , - (100p)
(4] T '
2 ' - V - V)/K
(ng . (B/Kz)e( 0 = 1/ . (100c)
N/ .
Therefore

fE ._a_g 2 100d)
ngvz < (0V> (
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and the expression ih the square_bracket in Eq. (100) is positive.
(£). Phase transitions. — This is the only case for which we have
found condition (III) not always satisfied., In the two-phase region,
p’'depends on T only, that is, Gap/aV)T = 0, The specific heat, Oy |
is always positive. Therefore condition (III), Eq. (97), reduces to

), &) > o oy

Using Eq. (98a), the Clapeyroh:equation (82b), and (8ic), this gives

AS . BS AEAS :
av Tgg-p) == >0, (1012)
ST QU e R L e
or simply el ... SRR R L
AEAS>0 U -, L (102)

Loram e IR
B . ."‘l

The condition is therefore that the energy'and the entrtgy ehould
change in the same direction. This is. fulfilled for practically all
phase transitions, but there are a few exceptions, such as the trans-
formations ice L to ice II, or, ice IITI to ice V, (Dorsey,7/ Ds 617)- o
.Summarizing, we find that condition (III) like the ofher two _
conditions, seems to be satisfied for practically all homogeneous‘.:
(one-phase) systems but to br??k~d°W? for a few phase transformations,.

The condition seems to be more generally- fulfilled than condition (I).

17, Discussion of a hypothetical case: A material which satisfies
- - conditions (I) and (II) but not. (L) |

We have shown in Sec, 16 that probably all materials satisfying
condition (I) will also satisfy (III) However, since no general proof
could be given, it nqy still be worthwhile to discuss the consequences
of a viclation of condition (III) in a material which satisfies (I) and
(ID).

Condition (ILI) was used in Scc. 8 to show that the energy in-

crcases monotonically with the entropy. - Condition (III) is only =2
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.sufficient not a necesaary, condition ‘for this; in order that the
energy have a maximum Gap/0V) rust not only be positive but-also
must satisﬂy Eq. (h3). If Eq. (h3) i8 fulfilled for some point on
the shock curve, ‘the energy must have a maxlmnm at thid point, must °
then decrease, have a minimnm ‘and " finally increase dgain with S at"
extremely hlgh temperatures.‘ Qf course, E may have séveral maxima.
and minima.

| As we have shown in connectlon with Eq. (L7), the pressure will
increase with the entropy at least as long as the energy does. Only

2

if E, decreases sufficiently rapldly with increasing =ntropy and .in~
creasing Vo, will o : SR

‘2(E? - E1)

Pp =Py Y VIV o (L7)

feach a maximum and then'decrease.' To find the condition fer & maxi=-
mum of Py, We proceed in a manner similar to that uséd in Eq« (L2),

only considering E.and V as independent variables. Then we have
( (ﬁ) dV | - -(P2 + p1)dV + "(V -V )dp . ' (103)
p
In order that dp/dV = 0, we must have
OF 1 - | |
(37 === (p, *Py) - (103a)
‘s . :

The left~hand side can be transformed, using the thermodynamic rela-
tions given by Eqs.(11) and (12),

. BN o -(9p/4V)
(), - ), (&), - o oy o

so that condition (103a) reduces to

An(2R) < of2R) . (10L)
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There is no general thermodynamical or staéistical reason why Eq. (10L)
should not be fulfilled for some substance. If it is fulfilled, p, '
will have a maximum If this is the case, the extrema of the various
variablea of state must follow each other, in the order of inoreasing
entropy, like this- first a minimum of the volume, then a maximum of
the energy, then a maximum of the pressure, followed by a minimum of
the pressure, a minimum of the energy, and finally a maximum of the.
volume. . o s ' | '

We shall now 1nvest1gate the‘consequences of the makima and minima
of energy and pressure for the stablllty of shock waves. We have shown
in Sec. 11 that a .shock wave cannot split 1nto “two waves going in

‘opposite directioms.if,. for all v&lues p2 < ph, we haVe
(Ph - P1)(V1 - )-1) > (P2 - P1)(V1 - Vé)f'ﬁ- "(1052

[reverse of Eq. (62)]. We smewed.im Sec. .1 that condition (105) is
certalnly fulfilled if the erergy increases monotonlcally with increas=—
ing pressure and:entropy. We showed further that a maximum of the
energy on the shogk .curve is a necessary but not a‘'sufficient: condi
tlon for a. splitting ef. shgek waves, SRR U o

However, it can easily be seen that a max1mum-of ‘the ppessure on
‘£he shock curve is & sufflclent (not necessary) condition for 1nsta-
bility of shock waves. If a shock wave w1th "1n1t1al" state 1 and-

"final" state L is to split, Eqe (57) must be fulfilled. To show that

this is possible, we compare the expressions = - e iy
$ = -
' ¥c,L " Ve, 3 (106)
and. .. - .-
D = (u0,1 - uo’h) - (uA,1 - uA’z) o ) (1068.)

The first of these is'vefy easy to calculate if -the pressures p)_l and
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Py = P, differ -only slightly, for then wave C is a small chock wave

and can be treated as almost adiabatic (see Sec. 3); we have [see
Zgs. (58), (10)] |

-V ' v

v
= Y T N B 01 R
$ v vy T s 0 (), - pey - gleg - mye 10D

L

This is always negative if p)_l > Py
On the other hand, we have from Eqs. (61), (6la’:

If-condition (105) is fulfilled, 2 will be positive and therefore

D>8 , | (168a)

On the other hand, if p, and p, are néar the maximum of p, we have
_ ) 2nd Py are 2
P, = Py = Fp = Py, SO that

P), =Py

1
R AVRRARIE e (1082)

This is negative (because, just before the maximum of E’.X increases
with increasing E) and ID| can be made as large as we wish in com-
parison with (8| [Eq. (107)] Therefore, near the pressure maximum,

we have

D <$§ . o - (108¢)

Therefcre ther: must be a certain intermediate value of p)_l (betweer
the energy maximum and the pressure maximum) for which D = &, so
that Eq. (57) is fulfilled. Shock waves in which the pressure be-
hind the wave lies within a certain range, close to' the pressure
maximum, can split into two waves going in opposite directions, as

- described in the beginning of Sec. 11.
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Let us investigate the way in which the split occurs, as a func—
tion of ph' We shall assume that the pressure does not vary much over
the region in which a split may occur. Then Eq. (107) for é will be
sufficiently accurate, while_g can be obtained by expanding Eq. (108):

(V - Vh)(%_' py) = (o = ) (V) = V)
2lug 4 = vy ))

. (109)

Condition (57) requires S = D; that is,

.o

P, =Py - T 2 (V.- '
L 1 R (v?- VL) = c(V? V)l), (10%a)

T T T AT v 07,

v e

where ¢ 'is a constant, depending very slightly on the state Q. Graph-
ﬂically, we can interpret Eq. (109a) as follows (see Fige 5)e On the
one hand, we draw the shoek curve which gives. Py, gs'a (complicated) .
function of V2 On the other hand we conaider the- stralght line Eqe.
(109a) whose slope, c, can be calculated from known quantitiess The
| 1ntersect10ns of the two curves: will give the*pc551ble solutions Pos
V2 for given ph,V (see Fig. 5)o If P has a maximum and a minimua,
then for states ph near these extrema, there will be three 1ntersecf1“
tions. of the straight line with the p(V) curve, 1nclud1ng the inter-
section of ph' % for values of ph far from the extrema, there w1ll‘
be only one intersection. In the latter case, shock waves corres-
pond;ng.to ph, L cagnot split,

It is easy to see that three intersections may occur without p
having a maximum and minimum if only at some point of the shock

curve
dp/dV <c , - | - €109b)

where dp/dV is taken along the'sﬁoék curve, and ¢ is the quantity- -~
defined in Eq. (1092). ) )
If there are three interscctions, a split is possible as far as

“the kincmatics of the shock waves is concerned., Now, for thermo-



Pressure p

Specific volume ¥

Fig. 5. Splitting of shock waves. -— , the shock curve in a p,V-diagram; the curve has a
maximum and a minimum. =-=---, the straight line p - p, = c(V - V4) defined by Eq. (109a). - The
intersections A and B rcpresent unstable shock waves; C, a stable shock wave.

- T2 -
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dynamic rcasaons, the split will occur in such a way that the entropy
at the instaht iﬁmediatqu after the split is as large as possible.
This requires obviously the selection of the highest of the three inter-
sections: for then the entropy of state 2 is greater than for either
of the other two intersections, and, moreover, state 2 propagates
| most rapidly into medium 1 (see Sec. 9). In addition, state 3, hav-
1ng the highest pressure compatlble with the kinematic conditions,
,w1ll also have a higher entropy than h and will spread into h. There-
.fore, if there should be a shock wave corresponding to one of the
:lower intersections (A and B) in Fig, 5,. it would split into one shock
Gwave correspondlng to the highest’ 1ntersect10n (C) and another small
shock wave going in the opposite direction. The shock wave would thus
flﬂcrease 1n amplitude rather than decrease by its "split." The newly
establlshed shock wave of higher entropy change and velocity would
then be stable.

- my———-




IV. CONCLUSION

18, Relation to the theory of Duhem

The theory of shock waves 1n a medium with a general equation of
state has been d1scussed previously by Duhem.11/ The principal differ-
ence between his treatment and the present one is that he did not make
any assumptlons about the equation of state, while we have made sev-
eral -- namely, the condltions (1), (1I1), (III), and the facts about
the equation of state at high temperatures (Sec. 5). Duhem was there-
fore not able to come to 'such general conclusions as we did,

Duhem d1d recognize the importance of condition (I), He possessed
the main results of Sec. 3 of this paper .namely that small but finite
compress1onal waves correspond to an increase of entropy if 9 p/av2 >0,
while finite rarefaction waves would be stable if o p/\V2 < 0 (pp.
177-178 of his paper). He also found that for 9 p/@V2 > 0, the veloc-
ity of smailmcompression'waves, with respect to the.lcss dense mater—
ial, is g{éater than the veloclty of sound; while relative to the den-
ser matcrlal the shock wave moves more slowly than sound [Eq. (15)
of this paper, p. 178 of Duhem's paper]. However, he could claim the
valldlty of his statements only for a rather restricted range of den-
s1t1es behind the shock wave, without being. able to state the condi-
tions of validity in physical ‘tcrms.

Moreover, Duhem found already that the -entropy change for small
shock waves is proportional to a higher power of the dcnsity change
than the first [his Eq. (19)], but he did not find the third-power law
[Eq. (13) of our paper]. Generz21lly speaking, his paper contains part
of the results of our Sec. 3, but none of the later sections. In part-
1cular, he did not discuss the stability problems. (aecs. 10 and 11) and

he COuld not obtain the general results of Secs. L, 7, and 9.

11/>P. Duhem, Zeits. fur Physik. Chemie 69, 169 (1909). I am
indebted td Professor Jo Von Neumann for drawing my attention to this
paper.
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19, Summary
We have shown in this paper: _
(1) Géneral theorems can be derivéd about shock waves. in .ady:. *

substance whose ‘equation offstaté'satisfies the three conditions: .

. P ‘ "eoe, ‘““ ‘;-._2.. . RO . L. . . .
“; | ..f ' - = § _:.:.‘<$)'.> 0: i ’1 ‘,- ., \'- Lo Coae . . (I) .

f .
A3

. Dy - .
¢ .7 ! . . . o - - - re~ .
«

T {\;-JLJ v (35) S 2 bata e L ,(II)'

| -"-(%%)'<o.-.'- )
. S T TS ' FO S _

(2) The three condltlons are satlsfled for a1l s1ngle-phase
systems whlch we have 1nvest1gated (Secs; 12 15 16) namely, ideal
gases w1th constant or varlable spec1f1c heat gases obeylng Van der
Waals{ equatlon, d155001at1ng gases, llqulds and’ sollds at normal
temperatures,‘and SOlldS at extremely low temperatures.' Condltlon (I)
is v1olated for most phase changes (Sec. 13). Phase changes can, how-
ever,, be excluded from cons1deratlon because they requlre too long a
time to occur in shock waves (Sec. 1) N o ’

- (3) If condltlon (I) is satlsfled for & substance, then all com-
presslve waves of small but f1n1te amplltude are connectcd with an
increase of entropy (oec. 3). o '

: (L) The 1ncrease of entropy for smalI volume changet AV is pro-
portlonal to AV [Eq. (13)] | ' T . e
“i (5) If 1n addltlon to condltlon (1), also condltlon (II) is =
fulfilled — that 1s, v (ap/BE) >'e2 everywhere —thén all compres-—
sive waves of whatever amplltude are connectéd with an increase of
. entropy.and are therefore thermodynamically stable (Sec. L), .E;??fﬁ
‘factlon waves of finite amplltude are unstable -and dlssolve lntd

trains of 1nf1n1tes1mal waves o
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(6) If condition (I) is not satisfied, as at the boundary of
phases, rarefaction waves of‘finite ampliﬁude;may be spable_(Sec. 1hI
provided the phase“trehSitidh can occur, and compression waves may,
 under certain cireﬁeskancesrpcqnsist of two shock waves of different
velocities, onehtravelihg behind the other, _ . '

(7) If conditions (I) and (II) are satisfied, and if the state
of the material in front of‘the‘shqck wave is given (V1,S1), there Is-
one and only one solution for any value of the entropy 82 behind the
shosk wave, between 51 and infinity (Sec. 7)o If the state of the
material .behind the shock wave is given (V2,5 ),. there is one and“
only one: solution for any value of the entropy 5 in front of the

B
a phase boundary (Sec. 7)

shock wave, from S, to S .where DB is either zero or corresponds to

(8) With increasing entropy of the materlal behind the shock

wave the specific volume V2 decreases to a minimum, , which is

ordinarily reached at temperatures of the order of 102030n. Fan-
still higher temperatures, Vé increases again to H v, (Secs. 5,8).
For some substances V2 may have several minima.and maxima, possibly
including some at lower temperatures, L A . o

If the state behind the shock wave is given (VZ,SZ), then the
specific volume V of the material in front of the wave increases
monotonically w1th decreas1ng entropy S (Sec. 8). _ |

(9) Ifcondition (III) as Aéii as condltlons (I) and (II) is
satisfied, the specific energy E2 and the pressure Py of the material
behind the shock wave increase monotonically with the entropy 82 for
given V1,51. If the state behind the shock wave, 2,82, is given,
the specific energy in front, E1, decreases monotonically with S1
even if condition (III) is not fulfilled. No similar theorem holds
for the pressurc P, in front. In any case, the encrgy and pressure
behind a shock wave are higher than the same quantities in front of
the wave (Sec. 8).

(10) If conditions (I) and (II) are fulfilled' the velocity of
any shock wave with respect to the material in front of it is always

greater than the v31001ty of sound in that material. For a given
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state in front of the shock wave, V S’, there 1s one. and only one
possible shock wave for every shock-wave veloc1ty uy greater than the
- velocity of sound a1 Incr3651ng shock-wave-veloo;ty u, oo;pesponds
to increasing entropy behmnd sthe shock wave,. S (Sec, 9).".

(11) The veloclty , Qof the shock wave relative .to the materlal
behind it is always less than the sound velocity a2 in that materIal.
If the state- behlnd the wave | is given, there, is one and only one

possible- shock waveﬁfor every veloc1ty u,, .between, a and a certaln

2

minimum velocity u * If, the, velocity is Usps. the state of the mate- .

2B
rial in front of‘the wave elther 11es on a phase. boundary or has zero

absolute temperature. Decrea51ng veloclty Uy

ing entropy iti"front .of the shock wave, (Sec 9)..

corresponds to decreas-

(12) In a material satlsfylng condltlons (I) and (II), a shock
wave will overtake any waves, of infinitesimal or f1n1te amplltude,
~which precode it, and will be overtaken by any wave follow1ng 1t.

(13) -If condltlons (I) and (II) are .satisfied, no shock wave
can-start-from the same point at the same _time.and 1n the same direc-
tion as any.other wave, whether of infinitesimal or of finlte ampli-
tude (Sec. 10). No shock wave can split into any number of waves go-
ing in the same direction. ‘ :

(1L) In a material fulfllllng also condltlon (III), no one-dlmen-

sional shock wave can Apllt in any way whatsoever (Sec. 11).
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