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ABSTRACT

A pulsed 14.2-MeV neutron source and Nal(T1) gamma-ray
spectrometer were used to measure gamma-ray production cross
sections for carbon, magnesium, aluminum, chromium, iron,
nickel, copper, molybdenum, niobium, tantalum, platinum,

I. INTRODUCTION

Gamma-ray production cross sections were
measured for samples of carbon, magnesium,
aluminum, chromium, iron, nickel, copper,
molybdenum, niobium, tantalum , platinum, 23U,
and 23%Py that were bombarded with a pulsed 14.2-
MeV neutron beam obtained from the 2H(t,n)He
reaction. These cross sections are of interest for
applications to the controlled thermonuclear reaction
(CTR) program and to various other Laboratory
programs.

II. EXPERIMENTAL ARRANGEMENT

Figure 1 shows the experimental arrangement. A
chopped beam of tritons (10-ns time width at 2-mHz
repetition rate) was accelerated to 2.3 MeV by the
Los Alamos Scientific Laboratory (LASL) Vertical
Van de Graaff. The triton beam pulses were con-
densed to a time width of 1 ns and directed into a
deuterium gas target. Neutrons, emitted at 90° to the
triton beam with a mean energy of 14.2 MeV, in-
teracted with one of the samples placed about 100
mm from the neutron source. The energy spread of
the neutrons intercepted by the samples was about
+0.5 MeV. Gamma rays produced from the bom-
barded samples were collimated and pulse-height
analyzed by a heavily shielded Nal(T1) crystal and
photomultiplier system. An anti-Compton Nal(T1)
scintillator surrounding the center crystal was used to
suppress further the background events and to im-
prove the response functions. The pulsed neutron
beam allowed time-of-flight (TOF) discrimination by

sorting out the desired gamma rays from neutron-
related and other background events in the crystal.

IOI. DATA REDUCTION
A. Background Subtraction

Figure 2 shows a relative time spectrum of Nal(T1)
pulses. Time gates were set as indicated to record
pulses with differing time relationships relative to a
fiducial time signal from a beam pickoff loop. Gate 1
covered the time region containing prompt gamma
rays directly from the sample. Gate 2 was set to cover
a time region before the neutrons from a pulse had
arrived at the sample and therefore was a measure of
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Fig. 1.
Experimental arrangement for the measurements
of gamma-ray spectra. The detector and sample
are about 100 mm above the plane defined by the
beam path.




T ¥ T T T T Gt‘ T

24t .

201 . .

o] |e— ~%5ng

Counts x 1073
—F—
I

0 1 1 1 ] 1 1 ] !
420 500 580 660 740
Channe!

Fig. 2.
Time spectrum of pulses in the gamma-ray detec-
tor relative to the beam burst pickoff time. Gate 1
corresponds to gamma rays made in the sample due
to the burst of neutrons. Gate 2 corresponds to a
time-independent background. Gate 3 corresponds
to fast neutron interactions in the Nal crystal.

time-independent background. Gate 3 covered times
after the direct gamma rays had arrived at the scin-
tillator and therefore was assumed to correspond to
neuiron-related events in the crystal that were
delayed by the neutron TOF.

The first step in data reduction was to subiract the
background pulse-height spectrum of Gate 2,
properly normalized, from the pulse-height spectrum
defined by Gate 1. Next, a separate spectrum,
measured with no sample in position and the same
time gates, was subtracted to obtain a net pulse-
height spectrum.

The net spectra for the samples used in this experi-
ment (except for iron) are shown in Figs. 3 through
14. Figure 15 shows the pulse-height spectrum for
iron before subtracting the no-sample spectrum. This
figure also shows the corresponding no-sample spec-
trum. The computer program NIBL converted the net
pulse-height spectra to gamma-ray spectra, using
knowledge of the Nal(T1) spectrometer’s response to
monoenergetic gamma rays.

. B. Response Functions

The response functions and efficiencies used in
analyzing the experimental data were obtained by
measuring the gamma-ray line shapes of calibrated
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Net gamma-ray pulse-height spectrum for carbon.

sources over the 0.28- to 4.4-MeV energy range. The
response functions are shown in Fig. 16 for 4.4-, 2.75-,
1.37-, and 0.66-MeV lines originating from neutron-
bombarded carbon, %Na, and 137Cs radioactive
sources. The unfolded spectra (not corrected for ef-
ficiency) strongly resemble the net pulse-height
spectra because the response functions have such a
favorable peak-to-tail ratio.

The samples used in the collection of experimental
data influence the shape of the gamma-ray response
function; therefore, the response measurements were
made so as to account for these sample-dependent
effects. For example, Fig. 17 shows the gamma-ray
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Net gamma-ray pulse-height spectrum for
magnesium.
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Net gamma-ray pulse-height spectrum for
aluminum.

pulse-height spectrum for the 1.27-MeV gamma ray
from %Na for a bare source and for the situation
where a 0.32-mm-thick iron absorber was placed
between the source and the detector. With the iron
absorber in place, the ratio R (number of counts in
the tail extending from the full energy peak to zero
energy to the total number of counts in the tail plus
peak) increased over the same ratio for the bare
source case. The effect results from two phenomena.
(1) The gamma rays were degraded in energy by
scattering in the sample and were added to the
number of counts occurring in the tail, and (2) the
number of counts in the peak was decreased by the
expected amount as a result of absorption and
scattering.

Gamma- Ray Energy (MeV)
3 4 5

340 | 7
10°¢ T T T T T T T
r Chromium ]
|03: —
o [ ]
c | 4
= L)
o
o Ny i
I°E e’ -
E e E
o lagag) 3
F as
)
10 ! ! 1 1 1 1 1 1 1 ! 1 1
o] 40 80 120 160 200 240
Channel
Fig. 6.

Net gamma-ray pulse-height spectrum for
chromium.
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Net gamma-ray pulse-height spectrum for nickel.

To simulate the geometry of the samples actually
used to obtain the experimental data, response
measurements were made for situations where
sources were placed inside a thin-walled iron
cylinder, between two thin iron disks, as well as
isolated sources. The ratio of counts in the tail divid-
ed by counts in the tail plus counts in the peak (after
correction for gamma-ray absorption) was deter-
mined for these source geometries.

An estimate of the sample geometry effect was
made to extend these measurements to other
samples. Details of this calculation are described in

Gamma -Ray Energy (MeV)
3 4 5 6

io*e—! 2 - 3 s : 8
L Copper ]
0% E
w [ ]
T ]
3
o L i
o
l02: =
L oy
1 ey
lo 1 1 1 1 1 1 1 1 1 1 1 1 1
0 40 80 120 160 200 240 280
Channel
Fig. 8.

Net gamma-ray pulse-height spectrum for copper.
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Fig. 9.
Net gamma-ray pulse-height spectrum for
molybdenum.
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Net gamma-ray pulse-height spectrum for tan-
talum.

the Appendix and indicate that the ratio R for an ar-
bitrary sample can be related to the measured ratio
for the iron standard by

[1 ) c'—(nsaasa/z)]

[1 ) c—(“st"st/z)]

Here, R,, is the ratio of counts in the tail divided by
total counts in the tail plus peak observed with a sam-
ple, o, is the scattering cross section of the sample,
and n,, is the areal density of the sample. The
equivalent quantities for the standard (here taken as
iron) are Ry, ¢4, and n,. By this method the ratio R
was obtained for all of the samples used in the ex-
periment.

Finally, the gamma-ray line shapes obtained from
the detector were described in terms of (1) a Gaus-
sian distribution around the peak energy with (2) a
relatively flat tail extending to zero energy. The ratio
R was parametrized over the 0.2- to 10-MeV gamma-
ray energy range. This information, with the absolute
efficiency of the detector, was incorporated into
NIBL, which derived the desired photon spectra by

Rsa = Ryt



L

successively stripping Nal(T1) r-esponse functions
from the net Nal(T1) spectra.

C. Neutron Flux Moeasurements

During this experiment, several separate
measurements were made of the absolute neutron in-
tensity. Two proton-recoil telescopes with different
geometrical arrangements were used. Both counters
used silicon and Nal(T1) detectors in a coincidence
arrangement to distinguish the recoil proton pulses
from other pulses. A large resolving time (~5- to 8-
us) was used in the coincidence circuit to ensure that
no proton pulses were lost due to time jitter. Further,
electronic livetime (greater than 99%) was measured
by connecting a 60-Hz pulser to the test input of both
preamplifiers and computing the ratio of the number
of these pulses that appeared in the spectra to the
number of times the pulser fired. |

The neutron intensity was measured as a function
of the gas cell pressure and beam current over the
small pressure range used in these experiments. All
of the measurements agreed to within 5% with the
neutron intensity calculations, which were made us-
ing appropriate cross sections for the 2H(t,n)4He
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platinum.
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Gamma-ray pulse-height spectrum for the 1.27-
MeV gamma ray from ’Na with (a—m ) and
without (e—e) an iron absorber. This figure shows
the effect of the gamma-ray production sample in
modifying bare source response functions.

reaction, target pressure, and beam current. Figure
18 shows the coincident pulse-height spectra ob-
tained for the silicon and Nal detectors, with and
without the polyethylene foil. Telescope efficiency
was calculated using the geometrical corrections
described by Hansen et al.l and the H(n,p)n cross
sections of Hopkins and Breit.2

D. Multiple Scattering

The multiple scattering effect of neutrons in the
samples was estimated using the code MCN.3 For the
nonfissionable samples, the correction was applied to
the data as a function of gamma-ray energy. In
general, a nonelastic collision in any of the samples
reduces the neutron energy to such an extent that a
second nonelastic collision cannot produce high-
energy gamma rays. Therefore, the full magnitude of
the correction indicated by MCN was applied to the




0 —T—T T T T T T T T T T T T T
500 AE spectrum E spectrum i
[ ]
400+ . = -
[ ]
@ . .
S 300+ - R o. -
S .
© [ ]
200}~ L o« o |
b . » J
R % ® .
o-» [
oo e ¢ . I Yoo -
oLt 1+ Y ["tmrt P £
20 60 100 140 180 20 60 100 140 180
Channel
Fig. 18.

Pulse-height spectra for the proton recoil telescope
Jor both AE (silicon) and E[Nal(Tl)] detectors.
Squares represent background counts with the
polyethylene radiator removed.

-

low-energy (0.5-MeV) part of the gagmma-ray spec-
trum and was decreased linearly to zero at 8 MeV.
This rather arbitrary procedure introduces only small
uncertainties because the multiple scattering effectis
only about 4% or less.

For the fissionable elements, the correction was
applied to the entire spectrum because most of the
gamma rays are associated with fission fragments
and the spectrum shape is not altered by multiple
scattering.

E. Cross-Section Calculations

Differential cross sections were calculated for
gamma-ray production as a function of gamma-ray
energy by

2
N,yxd (1)

o(E 0)=——,
Y FxeE,) xN

where N, is the number of gamma rays in an energy
interval, d2 is the harmonic mean of the square of the
distance from the neutron source to the sample, F is
the time-integrated neutron flux, ¢(E,) is the
efficiency of the gamma-ray spectrometer for

gamma-ray energy E., and N is the number of
sample atoms. Corrections were made for multiple
scattering of neutrons in the sample (<5%), dead-
time (~5-8%), and gamma-ray attenuation in the
sample. )

IV. ESTIMATE OF ERRORS

Uncertainties in the gamma-ray detector efficien-
cy were estimated to be +£3% from 0.5 to 3 MeV, in-
creasing to +12% at 8 MeV.

Neutron flux measurements were very consistent
throughout the experiment, and the unceriainty in
the flux was taken to be +7%.

Errors introduced by the unfolding program, in-
cluding the use of imperfect response functions, were
taken to be +5%.

Multiple scattering corrections were typically less
than 5%. The uncertainty assigned to this correction
was taken to be half the value indicated by the MCN
code.

Precision of the measurement of the sample posi-
tion relative to the neutron source was about +1 mm.
This introduced an uncertainty of about +3% in cross
sections.

Statistical standard deviations were added in
quadrature to the above uncertainties and are in-
cluded in the cross-section tables.

V. RESULTS

Cross sections for gamma-ray production on all
samples included in this report except carbon are
listed in Table I. Table II lists cross sections for those

' gamma rays that can be analyzed as individual lines.

In Table I cross sections are listed as millibarns per
steradian in 100-keV intervals from 300 to 4000 keV,
and in 500-keV intervals above 4000 keV. The
energy-weighted integral cross sections, S'E, ¢(E,)
dE,, for 235U_ and 2%y from 0.3 to 9 MeV are
23.5 + 2.8 and 25.4 + 3.0 MeV-b, respectively.

Table II lists cross sections for separable gamma
rays for the lighter elements (carbon through iron).
Some of these cross sections might include some
nearby gamma rays. For example, the 0.84-MeV
gamma-ray cross section listed for iron probably con-
tains some of the 0.93-MeV gamma rays from the
6Fe(n,2n)5Fe reaction. There are some peaks in the
spectra for heavier elements, but no attempt was
made to analyze them as single gamma rays.




TABLE I

DIFFERENTIAL GAMMA-RAY PRODUCTION CROSS SECTIONS AS A FUNCTION OF GAMMA-RAY ENERGY
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TABLE 1

DIFFERENTIAL GAMMA-RAY PRODUCTION CROSS
SECTIONS FOR PROMINENT GAMMA RAYS

Gamma-Ray Energy

Cross Section

Element (MeV) Angle {(mb/sr)
Carbon 4.4 45 21.3x2.8
64 15020
- 90 116%1.5
125 16.1+2.1
Magnesium 1.37 122 30.3+3.3
920 27.2%+3.0
1.81 122 8.3*1.2
90 8212
2.8 122 42107
90 6.2*1.0
Aluminum 0.84 122 54+1.1
1.01 122 10.6 £ 2.1
1.8 122 16.7+2.5
2.2 122 13.5+2.0
3.0 122 841+1.3
Chromium 1.33 + 1.44 123 76.7+9.2
Iron 0.845 122 656170
90 53.2%5.6
1.24 122 340%4.1
90 27.8+3.3

APPENDIX

MODIFICATION OF RESPONSE FUNCTIONS
DUE TO PHOTON SCATTERING

Neutron-induced gamma-ray production cross-
section measurements usually involve unfolding or
stripping of complex pulse-height spectra. Response
functions used in the unfolding process are obtained
from monoenergetic gamma-ray sources and consist
primarily of a Gaussian full-energy peak and a
relatively flat tail due to Compton collisions in the
detector.

This Appendix shows that for samples of moderate
size, this tail can be significantly larger than that
measured with the usual gamma-ray sources.

For simplicity, the sample is taken to be a cube
with sides t in length and n atoms/cm3, G,
monoenergetic gamma rays are procduced uniformly
through the sample, ¢, is the gamma-ray scattering
cross section, and the detector area is AA and is

located a distance R from the sample. Also, not is
taken to be small.

Assuming that (1) (1-AA/4rR2%) =~ 1, (2) efficiency
for scattered gamma rays is the same as the direct
gamma rays, and (3) absorption cross section for
scattered gamma rays is the same as for direct gam-
ma rays, the ratio of scattered gamma-ray counts to
counts from direct gamma rays is (errors caused by
assumptions 2 and 3 tend to cancel)

(1 i e—nastlz) '

For most samples, this is a modest increase in
counts (~ 13% for a 6.4-mm-thick sample of iron and
1.27-MeV gamma rays), but for detectors whose bare
source response functions have small tails compared
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to full-energy peaks, the relative magnitude of the
tail can be increased significantly (Fig. 3 shows an
increase of about 70%).

In complex gamma-ray spectra that have been un-
folded with bare source response functions, this effect

would appear to be an extra continuum of gamma
rays.
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