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SINGULARITY FI’M’ING IN
HYDRODYNAMICAL CALCULATIONS 11

by

R.D. Richtmyer and R.B. Lazarus

ABSTRACT

This is the second report in a series
techniques for the proper handling of

on the development of
singularities in fluid-

dynamical calculations; the first was called Progress Report on the
Shock-Fitting Project. This report contains six main results: (1)
derivation of a free-surface condition, which relates the accelera-
tion of the surface with the, gradient of the square of the sound
speed just behind it; (2) an accurate method for the early and mid-
dle stages of the development of a rarefaction wave, two orders of
magnitude more accurate than a simple direct method used for
comparison; (3) the similarity theory of the collapsing free surface,
where it is shown that there is a two-parameter family of self-
similar solutions for y = 3.9; (4) the similarity theory for the outgo-
ing shock, which takes into account the entropy increase; (5) a
“zooming” method for the study of the asymptotic behavior of
solutions of the full initial boundary-value problem; (6) comparison
of two methods for determining the similarity parameter 13by zoom-
ing, which shows that the second method is preferred.

Future reports in the series will contain discussions of the self-
similar solutions for this problem, and for that of the collapsing
shock, in more detail and for the full range (1,~) of y; the values of
certain integrals related to neutronic and thermonuclear rates near
collapse; and methods for fitting shocks, contact discontinuities,
interfaces, and free surfaces in two-dimensional flows.

——. — ________________

I. INTRODUCTION

Shock - fitting methods were developed in Los
Alamos in 1944 for one-dimensional problems with
spherical symmetry, for the special case in which
there is just one primary shock, whose position and
velocity are known at t = O, and which runs into
previously undisturbed material. In spite of the
simplifications, the method was sufficiently difficult
for the early computers that, when the Hippo project
was being planned, in 1948, the pseudo-viscosity
method was invented to replace shock fitting. 1
When used with a great deal of care and a certain
amount of good luck, the viscosity method can give
good results, but is quite risky at best2 and is

seriously lacking in spatial resolution in mul-
tidimensional problems. It has given quite incorrect
results in a few cases. A small project was started
here in 1974 to develop shock fitting further in one
dimension and to extend it to two dimensions; Ref. 3
is a preliminary report on that work.

In the course of the shock-fitting studies, it
became apparent that there are other singularities of
flows which also ought to be treated by special
methods, which will be called generally fitting
methods. They include interfaces, contact discon-
tinuities, free surfaces, rarefaction heads and tails,
shock interactions, corners, centers of symmetric
collapse, and the like. That has led us to the follow-
ing working principle as a basis for study: The finite
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difference methods ought to be used only for the
smooth parts of the flow, where the differential
equations are strictly valid, and all other parts ought
to be specially treated by whatever mixture of
analytic and numerical methods can be devised.

One advantage of that principle is that it gives one
a lot of freedom in the choice of the finite difference
method to be used in each of the smooth parta into
which the flow is divided by the singularities. (The
freedom is made use of in the particular problem to
which this report is devoted by the choice of special
dependent variables suited to the development of a
rarefaction wave. ) In particular, the degree of dis-
sipativity of the difference equations can be chosen
to satisfy Kreiss’s theorem4 rather than with any
idea of smearing out shocks.

Another advantage of that principle is that it
removes the most serious disadvantage of the
Eulerian formalism, namely the loss of precise loca-
tion for material interfaces and other discrete sur-
faces.

It is recalled that one purpose of the Lax-Wendroff
method was to fill a gap in the discussion of the
viscosity method in Ref. 1. That discussion showed
that the correct description of a flow with shocks is
obtainable, at least in principle, by first letting the
spacing Ax of the computation net tend to zero and
then letting the viscosity coefficient, or equivalently
the shock thickness d, tend to zero subsequently.
That sidesteps the question of what happens if the
limits are taken simultaneously, so that Ax and d re-
main of the same order of magnitude, as they always
are in practical calculations. The same question is
unanswered in nearly all the modern versions of the
viscosity method.

The Lax-Wendroff method fills that gap in the
discussion by conserving mass, momentum, and
energy exactly, in a certain sense4 already for finite
Ax, not merely in the limit as Ax+O. Since the
Rankine-Hugoniot jump conditions for “a shock are
based on the conservation laws, they also hold, in a
sense, for finite lx.

Another purpose of the Lax-Wendroff method
(possibly seen most clearly in retrospect) was to
clear up the confusion that existed concerning the
dissipativity of a difference scheme and the dis-
sipative terms in such a scheme. Difference schemes
are usually analyzed, following von Neumann, by
first linearizing, then treating the coefficients as con-
stants (at least in small neighborhoods), and then
expanding the solution in a Fourier series or Fourier
integral. The time dependence of the Fourier coef-
ficients is then determined by the difference
equations. If the absolute value of every Fourier coef-
ficient remains constant in time, as is the case for
the differential equations when similarly treated,

the scheme is called nondissipatiue. For any
reasonable difference scheme, that must be ap-
proximately true for the long and medium
wavelength components, but the short wavelength
ones are often significantly damped, as t increases,
in which case the scheme is called dissipative.
Itwas formerly felt that difference methods for

fluid dynamics ought to be nondissipative, because.
the differential equations are. However, it can be
shown that any finite difference scheme necessarily
falsifies the phases of the short-wave components;
hence, it is pointless to maintain their amplitudes,
from the viewpoint of accuracy. That it is also
pointless to maintain their amplitudes from the
viewpoint of the conservation laws is shown by the
Lax-Wendroff equations, which conserve mass,
momentum, and energy exactly, but are dissipative.
Lastly, Kreiss’s theorem shows that a suitable
degree of dissipativity, corresponding to a given
degree of accuracy, guarantees stability against
variability” of the coefficients, when the von
Neumann condition is satisfied.

When, as in the present work, difference equations
are used only for the smooth part of the flow, the two
main functions of the Lax-Wendroff method, conser-
vation and dissipation, can be separated. We are in-
terested only in the latter, hence need not require the
equations to be in conservation-law form, but can
apply the two-step Lax-Wendroff method of
differencing directly to equations of the form

au au ~
a= ‘Aii7c=’

for it is known that such differencing gives the
amount of dissipation required by Kreiss’s theorem.

II. THE RAREFACTION (CAVITY
COLLAPSE) PROBLEM

At time t = O, a y-law fluid is at rest under cons-
tant pressure in the region of space outside an empty
spherical cavity, i.e., in the region R > RO, where R is
the Eulerian radial coordinate. See Fig. 2-1. (The
computer code was originally planned to handle also
the corresponding plane and cylindrical problems,
but so far only the spherical one has been studied.)
For O < t < L, where to is the instant of collapse of
the cavity, there is a rarefaction wave between an in-
ward moving free surface at R = ~(t) and an outward
moving head at R = q(t), where O < ~(t) < RO, and
where q(t) = FL, + cot, co being the sound speed in
the initial state. For t<< to, the spherical shell ~(t) <
R < q(t) occupied by the wave is very thin, and the
rarefaction is approximately a plane simple wave5 in
which the sound speed c and the material speed u

2
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(3) O < t <b, R = $(t). At the free surface, a special
boundary condition is needed in addition to fitting.
It is described in Sec. IV.

(4) t = b, but t < to, R = O. The collapsing flow
may be representable asymptotically by a self-
similar flow of the kind described by HunterG — see
also Ref. 7. This question is debated in Sec. X:

(5) t = ~, but t > to, R = O. The outgoing shock
may also be representable asymptotically by a self-
similar flow.

(6) t > h, R = t(t). Shock fitting, as described in
Ref. 3, is required at the outgoing shock.

The main computational problem, to which the
latter uart of this report is addressed, is how to turn

/

i “ the flo-w around, at t%to, and get the outgoing shock
111
I !1

properly started.

FRti S@FACE

Fig. 2-1.
The cavity collapse program

-Hub

at, and shortly
after, t =-O. - - -

vary linearly with R across the shell. In that stage,
the velocity of the free surface is given approximate-
ly by :( =d,$/dt) = –2c0/(7–1). At later times, the
free surface accelerates inward until collapse occurs
at t = & [.f(~ ) = 01, at which time the pressure and
density are instantaneously infinite at R = O. Fort>
h, a shock front, whose position is denoted by R =
{(t), progresses outward from the center.

The flow has singularities as follows:

(1) t = O, R = ~. At t = O, the flow quantities are
discontinuous across R = Ro. At early times
thereafter, there is a thin centered rarefaction wave
in an interval [~,q] around RO. Although the theory
of such waves has been well known in the plane ap-
proximation since the time of Rlemann, the wave
has to be regarded as a singularity from the view-
point of the finite difference equations, so long as its
thickness is comparable with or less than the spacing
AR of the computational net.

(2) t >0, R = v(t) = m + cot. At the head of the
rare faction wave, the first derivatives of the flow
quantities are discontinuous. A special fitting
technique is used; it is described in Sec. V.

III. DIFFERENCE EQUATIONS FOR THE
SMOOTH PART OF THE FLOW

At early times, owing to the approximate plane
simple-wave character of the solution, it is natural to
take the entropy S per unit mass, the Reimann
variable p[ = 2c/(y – 1) for a y-law gas], and the fluid
velocity u, as the dependent variables, because those
quantities vary linearly with R in the simple wave,
whereas the pressure p and the density p vary with a
higher power of the distance from the free surface
(see Note following Eq. 3.8). The differential
equations for S, u, and u will next be derived from
the Eulerian equations, which, for plane (a= 1),
cylindrical (a= 2), and spherical (a= 3) symmetry,
are

(a a
)

1
at‘+ua~ P’-P—

R
a-l

1

& (Ra-’ U) , (a]

( a a
P

H ‘“Tii )
U.-au?

aR ‘

t

(b)

( a a
)

1 a
P

( )]

a-1
aT+u5_ii E=-p Ra-laT R u (c)

(3.1)

#is the internal energy per unit mass and is related
to p and p by an equation of state. A consequence of
Eq. 3.1 is the entropy condition

( a a
G ‘“~R )

S=o



If ~ is any function of S (not depending on any other
variables), then

(
a a

)fi+uaW&=o. (3.2)

We introduce as further
the Reimann variable.

u=
JI

Q

‘c S=const

thermodynamic quantity

= U(s, p) . (3.3)

For a ~-law gas, we can take

p = p(s,p) = spy; (3.4)

then

a = u(&)= 2c/(7-1),

where

c = c(~,p) = @’F-- . (3.5)

The program is to take ~, u, and u as dependent
variables, define a vector

u = (S,p,u) , (3.6)

and derive the differential equations for ~, p, u in the
form

au/at+ ANJ/aR = g , (3.7)

where A is a 3x3 matrix. The first equation is
already at hand: it is (3.2). A short calculation gives
the system

1

(a)

(b)

= o. (3.8)

In the coefficient of &/iiIR-in Eq. (3.8c), the differen-
tiations with respect to S are understood to be for
fixed p.

Note: For a -y-law fluid, either of the variables u
and c can be eliminated by use of the equation u =
2c/(-y – 1). For a fluid with a non-~-law equation of
state, neither a nor c varies exactly linearly with dis-
tance across a plane simple rarefaction wave, but IT

varies more nearly linearly than c, hence Eq. (3.8) is
the preferred form of the equations, h-which c may
be thought of as a function of u and S.

As stated in the Introduction, we wish to use dis-
sipative difference equations of second-order ac-
curacy. An easy way of obtaining them is the Lax-

9

Wendroff two-step method of differencing (Ref. 4,
pp. 300-306). For equations of the form (3.7) we
have, in the usual notation,

i

Step 1:

(3.9a)

Step 2:

n+l (u. = u; - g i?+~ u?++ - u?+~
)

*+*
J

+Atg .,
J+?! ]-~

(3.9b)

where the overbars denote the appropriate spatial
averages of the matrix A and the vector g. In the
code, the following minor modification of these
equations is used: In the system (3.8), g appears
only in the second equation and can be included by
rewriting the last term of the first member of that
equation (for a = 3) as

c a (R2U)
~ aR = 3C

This term is difference as

+’-+a R2U
aR.

in step 2, and in a similar way in step 1. Special
treatment of points near the free surface, near the
head of the rarefaction wave, and (after collapse)
near the center and near the shock front is described
in the following sections.

4



IV. THE FREE-SURFACE CONDITION

It is assumed .that a(R,t) and u(R,t) are smoot~
for R > ~(t), so that the entropy law (t3/tlt + uWtlR)S
= O holds Uear the free surface. Then, for problems
in which S is constant initially, ~ is constant
throughout the flow until shocks form. (The present
$scussion needs modification for problems in which
S # constant initially.) We set

a(R,t) =$=” aP(t)[R–~(t)la+p, (4.1)

u(R,t) = :(t) + Z&mP(t) [R–~(t)]~+P , (4.2)

where a and f? are positive constants to be deter-
mined later. If we substitute (4.1) and (4.2) into
(3.8b) and (3.8c), with i3S/tlR = O, then, writing only
the lowest order terms and replacing the others by
dots, we have

50( R-c)U +.. .

(4.3)

~+. . . + tio (R-& +.. .+u:& (k&)21-1 +.. .

+ y-1 ~~
2 0 a(R-{) 2a-1 + . . . = O

(4.4)

In order to achieve cancellation of the lowest order
terms in (4.3), 13must be =1; then, the second and
third terms indicated in (4.4) are of higher order, and
to achieve cancellation of the first and fourth terms,
a must be = 1/2, and we find

.2 e 0.~+qo

With a = 1/2, (4.1) shows that cr2[=c(R,t)2] is a
power series in R –~, starting with ~(R–/); hence,

~?#,#~=-Y-l
(4.5)

R=c “

That is the boundary condition at the free surface; it
connects the inward acceleration of the free surface
with the rate at which U2 + O as the free surface is
approached. In the code, a(u2)/tlR is approximated
by two difference quotients containing values of U2
at ~ (where U2 = O) and at nearby net points and is

then extrapolated back to R = ~. Equation (4.5) is
implied by Eq. (3.6) of Ref. 7.

When a has been calculated at all regular net
points at time t = tn+l by the method of Sec. III, Eq.
(4.5), for t = tn+l, contains two unknowns ~n+l and
(“+1, because (n+l enters into the approximation to
a(a?/tlR. That equation is solved, together with the
two additional equations

~n+l = (n + At/2(g” + gn+l)

(4.6)

/“+1 = ~n+l =&n + At/2(~n + ~n+l)

for the unknowns &“+l, /n+ 1, and #n+ 1 by Newton’s
integrative procedure. (Only one or two iterations are
required at each time step.)

It is easily verified that the boundary condition
(4.5) at the free surface is satisfied by the self-similar
solutions of the flow equations discussed in Sec. VII,

1by virtue of the first equation of the pair (7.9).
The free-surface boundary condition on the

variable u has already been incorporated in (4.2); it
is

U(f,t) = ;(t). (4.7)

V. FITTING THE HEAD OF THE WAVE AND
THE FREE SURFACE

The singularity at R = q(t) is of a very mild kind,
and the only boundary condition or joining condition
needed for the differential equations is the continui-
ty of the function values. Rather little harm is done
if this singularity is ignored completely in the
calculation; the main effect of so doing is loss of the
second-order accuracy of the finite difference
equations for that interval that contains the front, at
which the second derivatives are infinite. However,
it is very easy to treat the singularity correctly, and
to do so costs almost nothing computationally — it
costs less than nothing in the present problem
because it obviates the necessity of any com-
putations whatever for R > q(t).

A portion of the computational net near the
rarefact ion head is shown in Fig. 5-1. Whenever the
path of the rarefaction head is in either of the
positions indicated as (a) and (b) in the figure, that
is, lies to the right of a centered point like xz but cuts
through the net rectangle that contains that point,
values of the flow quantities at x2 are obtained by
the following special procedure in order that they
may then be used in the regular Lax-Wendroff step 2
to yield the values at the point indicated by the cir-
cle on the linen+ 1: A special Lax- Wendroff step 1 is

5



(a)(b)
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t n+ 1 v

I

x,--- -- -xz- 7 (t)
/# ““:oh!zizzcl

0.5 1.0

n

1.5

j-1 /jJ1

—i-----

Fi .5-1.
5Treatment of the (ml d) singularity at the head

of the rarefact ion.

performed using the triangle indicated; it is the
same as the normal Lax-Wendroff step 1 except that
the base of the triangle has been reduced from AR to
q(tn) –~. This step gives values of the flow quan-
tities at the tip of the triangle; they are then ob-
tained at X2 by quadratic interpolation on R using
also the known values at xl and at the rarefaction
head itself.

If the head lies in a position like (b), new values of
the flow quantities are needed also at the net point
j-1-1 that has just been uncovered by the motion of
the head; those values are obtained by linear or
quadratic interpolation on R at time t‘+ 1.

The procedure for determining the flow quantities
near the free surface is similar, once the motion of
the free surface is known. The sequence is: The
modified Lax-Wendroff step 1 uses the old position
~(tn) of the free surface; the interpolation at tn+112
uses an extrapolated value of $(tn+l’2); the Lax-
Wendroff step 2 can then be performed at all or-
dinary net points, and therefrom the final position
~(tn+l) of the free surface is determined as described
in the preceding section, followed by interpolation of
the flow quantities, at tn+l, if needed for an
uncovered net point.

VI. SOME NUMERICAL RESULTS FOR THE
RARE FACTION PHASE PRIOR TO
COLLAPSE

Several calculations were made, for 7 = 3.0, using
the methods described in the three preceding sec-
tions. Curves of c vs R at four values oft are given,
for a calculation in which AR was = 0.02, in Fig. 6-1.
Except where shown, the calculated points lie on the
curves drawn within the accuracy of the drawing.
The steepening of the gradient at the free surface,
which causes the inward acceleration, is clearly visi-
ble.

2.0, I I I I

R

Fig. 6-1.
Progress of the cauity collapse waue, for v = 3.
Except for those shown, calculated points are
within the curves as drawn.

As a provisional measure of overall accuracy, the
total energy, kinetic plus internal, of the fluid
between R = ~(t) and R = q(t) was computed and
compared with the initial energy.
[47r/3(q3-&3)pJ–y -1] of that same fluid. The
percentage errors are given in Table I (together with
the corresponding errors for a calculation with AR =
0.0025). A comparison calculation was made with
the standard Eulerian equations, with no fitting or
boundary condition on the free surface, but with the
cavity initially filled, as is often done, with fluid at a
very low density and pressure ( = 2X 10’4 and
8X 10–12, in units of the initial density and pressure
outside the cavity). Comparison of the second and
third columns of the table shows that, by this par-
ticular measure of the accuracy, the errors are reduc-
ed by a factor 50-200 by the methods described in the
preceding sections. Most of the improvement results
from the proper treatment of the free surface; the
special choice of dependent variables given in Sec.
III gives only an additional improvement by a factor
2-3.

VII. SOME SELF-SIMILAR SOLUTIONS OF
THE BOUNDARY-VALUE PROBLEM

If the initial conditions at t = O are ignored, one
has a boundary-value problem consisting of the par-
tial differential equations (3.8) for R > ~(t) together
with the free-surface condition at R = ~(t). For a ~-
law fluid, for which a and c differ merely by a
numerical constant, that problem contains no
characteristic length or time, hence is likely to have
self-similar solutions, i.e., solutions such that the
functions of R obtained at any distinct instants t 1
and t~ become identical if all lengths, velocities, and
other quantities are suitably resealed between the
two instants. (Such solutions can be obtained by
solving ordinary differential equations, as shown
below.) In the literature, one often sees arguments
claiming to show that the solution of the full initial
boundary-value problem, though not self-similar

,

t“,

*
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Time

t = 0.0846
0.1401
0.1646
0.1993
0.2302
0.2399
0.3097
0.3104
0.3495
0.3726
0.4254
0.4550
0.4657
0.4923
0.5009

TABLE I

ERROR OF TOTAL ENERGY OF RAREFACTION FAN

y = 3.0

Comparison Calculation:
Eulerian Variables, No Riemannian Variables,
FTee-Surface Fitting Free-Surface Fitting

II
AR = 0.02

6.99%

7.29%

6.93%

6.00%

(the initial conditions introduce a characteristic
length I&), is asymptotically self-similar near
collapse, i.e., for G –t <<tOand R<< RO. Although we
feel there is reason to doubt the general validityof
those arguments, we have investigated the self-,
similar solutions of the boundary-value problem,
and we have attempted to examine numerically the
solution of the full problem asymptotically near
collapse tosee whetherit has a similarity property.
The results sofar are inconclusive, but further work
is planned. The goal of such work is to be able to
patch together numerical calculations just before
and just after collapse by solutions obtained from
the similarity theory.

For application to the cavity-collapse problem,
the class of self-similar solutions is further restricted
by the assumption of isentropy, which introduces a
characteristic constant entropy So. (That is to be
contrasted with the assumption made in the
Guderley-Butler shock-collapse problem, in which
there is a characteristic constant dendy pO — the
density of the stationary fluid into which the collap-
sing shock is running. The two sets of assumptions
are contrasted in Table II — they lead to different
systems of ordinary differential equations. )

The similarity assumptions are these: First, there
are positive constants A and 8 such that the position
of the free surface is given by

~(t) = A(tO-t)6 (7.1)

AR = 0.02

0.22%

0.13% .

0.10%
0.075%

0.64%
0.39%

0.033%
0.03s%

AR = 0.0025

0.016%

0.008%

0.018%

In the discussion of the self-similar solutions, t.
could be taken = O, but we retain the notation of the
preceding sections in the interest of returning later
to the full initial boundary-value problem. ) Then, a
dimensionless variable q is defined:

R
n=

A(to-t)6
(7.2)

the region of interest is q > 1; q = 1 corresponds to
the free surface. It is then assumed that the depen-
dent variables depend on R and t only through q,
after suitable scaling.

The dependent variables could be chosen as n and
u, or as c and u, since, for a y-law fluid, u and c differ
merely by a constant. We make the latter choice, in
conformity with most of the literature. Since c and u
have the dimensions of velocity, they can be written
as

c(R,T) =RC(q)/(To–t) = A(t. –t)b–lqC(q)
(7.3)

u(R,t)=RV(v)/(t,, –t) = A(to–t)a-lqV(q),

where C and V are dimensionless functions, called
the reduced sound and material speeds. When~he
expressions (7.3) are substituted into (3.8), with S =
const, the explicit dependence on R and t cancels
out, and the following system of ordinary differential
equations is obtained:



TABLEII

SIMILARITY ASSUMPTIONS

R
n=

A(tO-t)6

Collapsing Shock Collapsing Cavity
(Guderley, Butler, etc. ) (Hunter, Clarke, etc.)

C = A(to-t) 6-lC(I’1) C = A(to-t)*-lc(tl)

U = A(to-t)6-%(n) U = A(to-t) 6-h(rl)

p = P(n)

[ 1
e.g., P(1) = *PO

s = s(n)
(In fact, s is independent

of both R and t until
collapse.]

Consequence: Consequence:

S = A2(t0-t)
26-2s(n1 2 26-1

P-A
=(to-t) ‘-1 P(?l)

TIC’ + c

Y-l Cv} - (y-1) (.V+6)Cv(6-1) {(V+6)C - --7&
.

A

(6-1) {(V+6)V - +C2} + 2C2V

llv’ +V=
A

(7.4)

where

A= A(C,V)=(V+6)2 –C2. (7.5)

Itisnoted thatthe quantityofdC/dV =C’/V’isa
function ofCand Vanddoes not depend explicitly
onq. An ordinary differential equation system of the
general form (7.4) having that property is called
autonomous; it has the advantage for interpretation
and presentation of the solutions that a solution
curve in the three-dimensional space C,V,q is uni-
quely determined by its projection onthe C,Vplane.
(Even the explicit appearance of q in the left
membersof(7 .4) canbeeliminated bytakingT =log
q as the independent variable.)

It should be noted that the autonomous property
of (7.4) follows from the particular substitution (7.3)
and. does not follow, for example, from the dimen-
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sionally equivalent substitution c(R,t) = iC l(q),
u(R,t) = &Vl(q). The possibility of putting” the
equations into autonomous form is a consequence of
the dimensional properties of the fluid-dynamical

Iequations and can be seen as follows: First, we take
A= 1 and &=0 in this paragraph, so that q =
R( –t) ‘*. We write

+
c’ n = Y(c(rl), v(n), n). (7.6)

‘n

Let a be any positive constant, and let b = a 1-5.
Now,

+
C’ bn
v’ 11 = Y(c(bn) , V(bn), bn) . (7.7)

On the other hand, for ~ = const, it is seen that if
c(R,t) and u(R,t) satisfy (3.8), then the functions

t(R,t) = c(aR,at)

ti(R,t) = u(aR,at)

also satisfy (3.8), hence the functions

i(n) = c ()aR— = C(bn)
(-at]s



()aRi(n) = v —
(-at)a

also satisfy (7.6); that is,

= V(bn)

-’-HC’ bn
V bq = Y(C(b~), V(b~),@.

Since b is arbitrary (if ti#l), comparison with (7.7)
shows that @ does not depend explicity on q. (The
argument must be modified for 6=1.)

Equation (7.4) can be written as

+%
FCV)nc’(rl)=Acv

>
(7.8)

Ilv’ (n) = -~

where F and G, like A, are simply polynomials in C
and V. The boundary conditions at the free surface
(n = 1) are

C(1) = O (from vanishing pressure),

V(1) = –6 (from u=~ at R = ~), (7.9)

The boundary conditions for q+ w are discussed
below.

In principle, the system (7.8) can be integrated by
Runge-Kutta with (7.9) as starting values. However,
there is a difficulty that the point with C and V given
by (7.9) is a critical point, i.e., a point where the
polynomials F, G, and A all vanish. A standard
analysis shows that, near the critical point, V has the
form of a power series in q– 1, while C has the form
@ times a power series. For that and other
reasons, the numerical work was done with functions
q(q) and v(n) given by

q(n) . J- J c(q)
y-l -l

(7.10)

v(n) = Tlv(ll)

(then, the system no longer has the autonomous
form), but the results will be described in the C,V
plane. The complete set of critical points is describ-
ed below and in Fig. 7-1.

The boundary conditions for q+= come from the
requirement that c(R,t) and u(R,t) have definite
limiting values, as t - to for fixed R, i.e., as q + m.

From the definition (7.2) of q, it is seen that (7,3) can
be rewritten as

()
1/6

c(R, t) = ~ RW6c[n1

(r
to-t

= (A#6&1@V)

u(R, t) = ---

Hence, as q + m,

(7.11)

shows that if C and V -0, as qExamination of (7.4)
+ w, then they behave asymptotically according to
(7.11); hence the boundary condition is that C and V
+ o.

For most values of y and 6 in the relevant ranges,
the system (7.4) has nine critical points, of which six
are shown in Fig. 7-1 for -y = 3, 6 = 0.7 and the
remaining three are obtained by reflection in the V
axis. For the general classification of critical points,
the reader is referred to Birkhoff and Rota, 8 p. 130 ff.
A little algebra shows that, in the present problem, if
either F or G vanishes along with A, then the other
vanishes too. That simplfies locating and classifying
the critical points.

Factorization of the denominator A(C,V), (7.5), of
the expressions (7.8) shows that, along any solution
curve in the C,V plane, the direction of change of q
reverses, as the curve crosses either of the lines V~6
= ●C, one of which is shown dashed in Fig. 7-1, un-
less F and G also vanish at the same time. According

/

/

/’ 0.6
P

2

<,Nao2

0.4c
/ ‘aAOrM

8~ mu
Al&4p , x!’:- 1 J&

FSTAJI

-0.8 -0.6 -0.4 -0.2
v

Fig. 7-1.
Critical points of C = C(V) in the upper half-
plfzne, for y = .?.
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to the boundary condition given above, the solution
curve starts from the saddle point B in an upward
direction and terminates, for q - ~, at the star point
F; hence, in order that C and V be single-valued
functions of q, the curve must cross the dashed line
either at the node E or the node C. Numerical in-
tegration with third-order Runge-Kutta for various
values of 6 shows that, when a complete solution is
obtained at all, it goes through point C, not E.*

The situation is in marked contrast with that for
the corresponding collapsing shock problem studied
by Guderley and Butler, where the point correspon-
ding to C is a saddle point, instead of a node.
(Qualification is necessary, because our studies have
been made for -y = 3.0, while those of Guderley and
Butler were for 1< ~ < 2; detailed studies of both
problems for general ~ will be presented elsewhere.)
In the case of a node, all solution curves that come
reasonably close are drawn into the node, and all,
with one exception, pass through it in the direction
indicated by the letter “p” (for “primary”) in Fig. 7-
1; the one exception takes the direction “s” (for
“secondary”); whereas, in the case of a saddle point,
only the curve that is aimed in precisely the right
way passes through the point at all; all other
solutions deviate either to the right or to the left.
Consequently, in order to get a solution at all, for the
collapsing shock problem, the value of c! has to be
precisely chosen, whereas there is range of admissi-
ble 6’s for the collapsing cavity problem. In either
case, once the dashed line has been crossed, the solu-
tion is drawn automatically to the star point F at the
origin, and the terminal boundary condition is
satisfied.

The results described from now on are all for
7=3.0.

For 6 in the interval 0.666667<6<0.706542, the
solution curve arrives at the node C along the
primary direction, but there are many curves leaving
C to the right: one starting in the secondary direc-
tion, as seen most clearly in Fig. 7-2, for 6 = 0.68,
and a one-parameter family of curves starting in the
primary direction, as illustrated by the upper three
curves of Fig. 7-3, for ~ = 0.70. (The arrows indicate
the direction in which the curves were calculated; in
particular, the lowest one was calculated both”

—————————

*At least for -y=3. For the collapsing shock problem
(to be published), the situation reverses at a critical
value of -y (near 1.9, but different for cylindrical and
spherical geometry). It remains to be investigated
whether the same is true for the collapsing cavity
problem, and, if so, whether the critical values of -y
are the same.

0.4
I I I fly

1 I

0
f

0.s -
01M3.SJUWanJJrw

cO.a-

0.1-

v

Fig. 7-2.
A similarity solution for 6 = 0.68, ~ = 3.

forward and backward, by reversing the sign of Aq in
the Runge-Kutta method; the direction of increase
of ~ is from left to right along all the curves.) The
curves of the one-parameter family (for given 6) pass
through C with change of direction, but generally
without discontinuity of higher derivatives.

In the special case 6 = 0.708542, the curve comes
to C alorig the secondary direction and, if continued
so as to leave in the same direction, passes through C
with continuity of all derivatives and in fact
analytically. For certain special values 6 in
(0.666667, 0.708542), one curve of the one-parameter
family referred to is also analytic at C. That appears
to be a rather intricate Diophantine affair and is dis-
cussed in detail by Hunter, 6 who, however, rejects
those solutions for reasons that are rather hard to
follow.

An argument given by Hunter claims to show that
only those solutions analytic at C can appear asymp-
totically in a physical problem. That argument
seems doubtful to us for the following reason: In the
first place, any of the curves in the C,V plane dis-
cussed above, including those of the two-parameter
family (where 6 is now regarded as the second
parameter) lead to an acceptable solution of the par-
tial differential equations of fluid dynamics, by

v

Fig. 7-3.
Some of the similarity solutions for 8 = 0.70, -y

?=..
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means of Eqs. (7.2) and (7.3). Since the fluid-
dynamical equations are hyperbolic, there is no re-
quirement of analyticity; in fact, jumps of the
various derivatives of the flow quantities can be
propagated along the characteristics; the first
derivatives are discontinuous at the head of a
rarefaction wave, and the functions themselves can
be discontinuous for a weak solution. Now, the solu-
tion of the full initial boundary-value problem of the
cavity-collapse problem is indeed analytic; it can be
shown (again by consideration of the
characteristics), but it does not follow that the self-
similar solution to which it converges must be
analytic.

If qo is the value of q at the node C, then the curve
q = q. in the R,t plane, namely the curve

R = Aq. (To–t)~ ,

is characteristic; it is the path of an incoming
spherical sound wave that just catches up with the
free surface at collapse. For determining how the free
surface itself collapses, nothing outside that sound
wave has any influence, hence the part of the solu-
tion curve to the right of the dashed line in the
figures has no effect, until after collapse.

The properties of the critical point C as a function
of 6 in (O,1) (still for 7 = 3.0) can now be sum-
marized. (It always lies on the dashed line in the
figures.) For 0.708542<0.711405, the solution curve
comes to C along the primary direction from above
and to the right and crosses the dashed line first,
hence is unacceptable. For 6>0.711405, C is a spiral
point, hence again the solution curve crosses the
dashed line (in fact infinitely often) before arriving
at C. For 6 < 0.666667, the point C disappears (it
merges with F, then becomes complex, as 6
decreases). Hence, we are left with the interval
(0.666667, 0.708542).

VIII. THE SIMILARITY SOLUTION AFI’ER
COLLAPSE; THE OUTGOING SHOCK

At the instant of collapse (t = to), according to
(7.8) and the equations just preceding it and the
relations p = spY, c2 = YPIP,theflOWquantitiesvary
as inverse powers of R, namely,

- 1-6

c(R, to) = C R 6
00

1-6-—
u(R, to) = UWR 6

i-l- 2 1-6
6 y-1p(R, to) = POOR

A&+

p(R, to) = pooR

(8.1)

The infinite pressure gradient at R = Ostarts an out-
going shock, and we look for a self-similar solution
for that shock and the flow behind it. The problem
was considered by Hunter,G but only in the
isentropic approximation.

As in Sec. VII, the flow quantities are written as
functions of a similarity variable, each multiplied by
a power of t – &. As similarity variable, we choose

R -in6
6= =e n.

A(t-to)6
(8.2)

(This choice makes ij real, fort> to. Since only log q
appears in the ordinary differential equations, the
extra factor e ‘imb is irrelevant. ) The flow ahead of
the shock, for t 2 to, is simply the smooth
continuation of the flow found in Sec. VII; hence, the
value of 6 has to be the same as in that section, to
give the same behavior (8.1) for t = to. It then follows
that the power of t – to appearing in each flow
quantity must be the same as in Sec. VII, because
the compression ratio P2/P I across the shock the

corresponding pressure ratio ps/pl, velocity ratio
u2/ul, and “entropy” ratio sz/sl (where s = pp ‘Y),
and so on, are all independent of t for a self-similar
solution. Therefore, we write [compare with (7.3)1:

c(R, t) = & C(a) = -A(t-tO)6-l;C(t) ,
0

6-1A
u(It, t) = & v(t) = -A(t-to) Ilv(fi) ,

0

s(R, t) = S(;) ,
(8.3)

for t > G. The functions C, V, and S can have jumps
at the point ij = ij * where the shock occurs. (Note
that c and C have opposite signs, as do u and V; that
is unfortunate, but it obviated recoding some of the
computer programs. )

In the similarity variables, the entropy equation

ag+uas=o
at a=

11



takes the form

[6+ V(ij )]s’(ij)=o.

It can be shown that V(fi ) cannot be = –6. In fact,
V(ij) cannot be = –6 immediately behind the shock,
at i = ij *, no matter what value i * has; that follows
from the numerical values of the self-similar solution
already obtained for the flow ahead and the
Rankine-Hugoniot shock conditions. Therefore, S’(ij
= O, and s(R,t) has a constant value sz in the flow
behind the shock, which is, of course, not necessarily
equal to the constant value S1(= 1 in Sec. VII) ahead
of the shock; in fact, sz > S1 because a shock always
increases the entropy.

Since the entropy is constant, the ordinary
differential equations (7.4) and (7.8) hold also
behind the shock. In Fig. 10-4, two solution curves
are shown in the C,V plane: the curve C, consisting
of the parts Cl, CZ, and C3, which describe the flow
ahead of the shock, and the curve C‘, which
describes the flow behind it. The shock is a jump
from a point Po on the first curve to a point P: on the
second.

The boundary conditions at ij = Ofor the curve C’
come from conditions at the center of the system.
For R = O, the velocity u vanishes by symmetry,
while the sound speed c assumes a positive value.
Hence, by (7.3), V(0) is finite, while C(fj ) + ID,as ij
-0. By letting C(fi ) + m in the second differential
equation (7.4), we find that

V(0)= –2(1–6)/3(7-1) . (8.4)

That suffices to start the curve C’ at very small ij,
hence very large negative C(ij ).

Let i be so normalized on C’ (it can be multiplied
by an arbitrary constant), that it has the value ij * at
P‘. Then, the constant A in (8.2) has the same value
on both curves, because the coordinate R of the
shock is the same when viewed from in front of the
shock or behind it; the shock’s position is

~h = A~*(t–tn)b,

and its speed is

kh = W“(t-h)b-l. (8.5)

For the Rankine-Hugoniot jump conditions across
the shock, let subscripts 1 and 2 denote values just
before and just behind the shock, respectively. The
conditions are

P2ex-1 P2

q= e-x , where x = — ,g=a.
PI y-1

(8.7)

In the similarity variables, these equations take the
form

Y’$o (Vl + 6)2
x=ti~o+e+l~where$o = 2

c1

(8.8)

C2= @5=%i
(8.9)

V1+6
v2=— -6 .

x
(8.10)

The numerical procedure for locating the jump is
this: For each point P on C3 (where C 1 and V 1 are
known), C2 and Vz are determined from these
equations as target values to be attained by the
jump, if the jump were to occur at point P. Then, for
each P‘ on C‘, the value V2 of V at P’ fixes the point
P on & from which the jump would have to start; P’
is moved along C’ (upward in the figure) and P cor-
respondingly along C3, until condition (8.9) is also
satisfied; ij * is then the value of ij at the point P on
~, and the shock is completely determined.

Each of the solutions, for t < t., of the two-
parameter family discussed in Sec. VII can be com-
pleted for t > k, in the way described here, by a self-
similar solution containing an emerging shock. An
example is shown in Fig. 10-4.

IX. THE FLUID-DYNAMICAL EQUATIONS
IN SIMILARITY VARIABLES

TO follow the motion of the free surface and the
fluid just behind it near collapse, a special com-
putational net and a special set of difference
equations are used for the region t s to, R x O. The
independent variables are q and t, instead of R and t,
where

n = M(t), (9.1)

12



.$(t) being the position of the free surface, as deter-
mined by the calculation itself. Relative to the R
grid, the q grid represents a moving and shrinking
frame of reference. The two calculations are coupled
by interpolation at intermediate radii, and the whole
is called .simikzrity-~itting. The dependent variables
are Q(q,t) and V(q, t) and are related to the Reimann
variable u and the fluid speed u by the equations

a(R,t) = #(t)@ Q(q,t)

u(R,t) = ~(t) V(q,t) . (9.2)

The factors ~(t) are included to make Q and V
dimensionless. (Note 1: It would have been more
reasonable to include a minus sign in those
definitions, because ~ <0, but that was not done.
Not e 2: The entropy equation was also carried along
in the calculation, but vacuously, because only the
isentropic case was computed.)

The partial differential equations result from su~-
stituting (9.2) into (3.8) and dropping the terms in S;
they are:

.. .

Q+~Q+; [(V-n)

E

.(Q1 +
*

~-1 ) + y-l~Q+n2v)’] = 0 ,
n

.. .

; + :V + :[(v-n)v’
c

+ +Q{(n-l)q’ + *II = O ,

(9.3)

where the dot denotes tlltk and the prime altlq. The
system is of the form (3.7) and was difference by
the Lax-Wendroff two-step procedure (3.9).

If the flow is asymptotically self-similar, then
Q(n,t) and V(q,t) should become independent of t, as
t~t,.

The free-surface boundary conditions come from
(4.5) and (4.7); they are

.
~=-—– y-l ~ 2

c
4CQ

\
atn=l. (9.4)

V.1 J

Note: The symbol V is used differently here and in
Sec. VII. To get the quantities C and V of that sec-
tion, the present quantities ~ Q and V must be
multiplied by 6/q.

A consequence of the transformation (9.2) of the
dependent variables is that, whereas a and u were
both known in advance at the free surface for the R
grid (in particular, u = O), Q is now unknown there,
and an additional equation is needed; it is obtained
by setting q = 1, V = 1 in the first equation of (9.3)
and evaluating (V – q)/(q – 1) by L’Hbpital’s rule
[setting q = 1, V = 1 in the second equation of (9.3)
merely gives the first of (9.4) again]. We find

..

6+h+:; [Y(V’ +2)-3]= O.
c

This equation is used (in effect as a special step 2 of
the Lax-Wendroff) to advance Q in time at q = 1.
The derivative V‘ is obtained at t ‘+112 from the
results of step 1 at q – 1 = Aq/2 and 3Aq/2, together
with the value V = 1 at q = 1, by differencing the ex-
trapolation. Since Q’ has disappeared, the above
equation is not coupled to the equations for advan-
cing Q at the regular net points q – 1 = kAq (k =
1,2. ..). A more careful treatment provides such
coupling. Instead of merely evaluating the differen-
tial equation at q = 1, we average it over the interval
(1,1 + Aq) with a weight that decreases linearly from
1 to O across the interval. (The corresponding effect
is achieved in the normal Lax-Wendroff by the
averaging that takes place in step 1.) Then, the
above equation has an extra term and takes the
following form:

i iQ + – Q + ~ {;[y(Vt +2)-3] + ~(V1-ql)Q’} = O,

i
(9.5)

where ql = l+Aq and VI = V(ql). Since the last term
is of smaller order than the others, it is adequate to
evaluate Q’ to first order from the values at tn.

The application of (9.4) and (9.5) is similar to the
fitting procedure at the free surface described for the
R net in Sees. IV and V, but with the following
differences: (a) there is no need for a special Lax-
Wendroff step 1, because the free surface is always at
the net point k = O; (b) aft~r s$ep 1 at k = 1/2,3/2,...
and the approximation to [, [, and ~ at tn+ 112that
result therefrom, and after the regular step 2 at k =

, ,..., Eq. (9.5) is then used to adv~nc~ Q at q = 1 as12
described above, and the values of ~, ~ and ~ at tn+l
are obtained from (9.4); (c) there is no need for inter-
polations at tn+ 1, because no points of the ~ net are
uncovered by the motion of the free surface.

When the method of this section is combined with
that of Sec. III, involving a standard R – t net, and
the two calculations are coupled by mutual inter-
polations at intermediate radii, the effect is to

13



provide a refinement of the R – t net near t = tO,R =
O, the degree of refinement increasing without limit
as collapse is approached. The overall procedure is
called zooming, to borrow a term from photography.

The resulting algorithm was tested by a calcula-
tion in which the initial values of Q and V were
taken, for an interval 1 = qO< q S qk (= 2.0 or 5.0),
from the similarity theory of Sec. WI, for c1 =
0.708542. The computed Q and V were very nearly
independent of t over a very large number of cycles,
as they ought to be, while ~(t) and {(t) varied as
shown in the log-log plot of Fig. 9-1. It is seen that
the values lie on a straight line with slope –(1 – 6)/6,
as they should.

For q > qc (qc is the value of q at the critical point
through which the solution of the ordinary differen-
tial equation passes; qc = 1.22195 for 6 = 0.708542),
both characteristics of the system (9.3) slope to the
right; they both represent signals moving away from
the region near the free surface. One consequence is
that in the test calculation just referred to, one must
not impose a boundary condition at q = qk; the
boundary value must float freely with the solution of
the differential equation. To achieve that, we
calculated the boundary values by one step of the so-
called Courant-Isaacson-Rees method, which con-
sists of writing the equation in characteristic form,
following each characteristic back from q = ~k, t =
tn+t to a point between ~k-] and ~k at t = tn,
obtaining a value of the Rlemann invariant at that
point by linear interpolation on q, and then using
that value of the invariant at ~k, t“+’.
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Fig. 9-1.
Agreement of the solution of the partial
differential equations with the similarity solu-
tion, oulhen the initial data are taken from the
similarity solution.

X. THE ASYMPTOTIC BEHAVIOR OF THE
CAVITY-COLLAPSE PROBLEM

In view of the large number (in fact, two-
parameter family) of self-similar solutions found in
Sees. VII and VIII, the question arises, to which of
them the solution of the full cavity-collapse problem
is asymptotic, and indeed whether the solution of
that problem is asymptotically self-similar at all.
The same questions arise about other problems of
cavity collapse, such as ones in which the fluid is in-
itially moving inward, ones with spherical layers of
different material, and so on. To begin investigating
those questions, a few calculations have been made
with the zooming method described in the preceding
section, for the present problem as described in Sec.
II. One such calculation, for ~ = 3.0, which used 400
points in the R net and 700 in the q net, will now be
briefly analyzed, and will be referred to simply as
the full calculation.

One method, in principle, for testing the asymp-
totic self-similarity of the solution obtained by the
full calculation is to plot & log-log vs ~; the graph
should be asymptotically a straight line with slope
–(1 –~)/6. If the solution were truly self-similar, that
would be as good as any other method of test. In
practice, it is unsatisfactory, because, as stated in
Sees. VII and IX, the motion of that part of the fluid
corresponding to the interval (l,qc) of the variable q,
a part having vanishing mass in the limit t = to, is
unaffected by the motion of all the fluid outside, un-
til after collapse; hence, its motion is not necessarily
representative of that of the bulk of the fluid. The
log-log plot of ~ vs & is given in Fig. 10-1, and it is
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Fig. 10-1.
Weak approach of ~ us & from solution of the
partial differential equations, to the similarity
solution.
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seen that the self-similar property is established, at
best, only late in the flow. A much better method is
the following.

If the solution is assumed to be asymptotically
self-similar, then, for t sufficiently near to and for an
interval (RI,% ) of the radial coordinate R such that

t(t) <<R, Rz <<q(t), (10.1)

the flow variables ought to be approximately equal 1
to certain inverse powers of R, as given by (8.1). To
test that assumption, –u is plotted logarithmically
against R for two values of t in Figs. 10-2 and 10-3.
The values were obtained from the full calculation;
some of the points are from the R net and some from
the q net. The values of f(t) are 0.00960 and 0.00299
for the two cases, and the rarefaction head is at q(t)
= 2.0. It is seen that, at intermediate radii, the
points lie approximately on a straight line, whose
slope can be estimated graphically to slightly better
than 1%. In this way, empirical values 0.684 and
0.686 of 6 were obtained for the two cases.

Clearly, a much more detailed study will be re-
quired to establish whether the solution is asymp-
totically self-similar.

Even if the value 6 = 0.685 is accepted, a choice
must still be made among the one-parameter family
of self-similar solutions indicated schematically (for
8 = 0.70) in Fig. 7-3, before the outgoing shock can
be started by the similarity method of Sec. VIII. It is
evident from Fig. 7-3 that the choice must be based
on the ratio C/V for large q, i.e., for R in the interval
(Rl,l%) given by (10.1). The full calculation gives
C/V z 1.0, which corresponds to the lowest curve of
Fig. 7-3, the one that emerges from the nodal point
along the secondary direction. With that choice, for 6
= 0.685, the complete similarity solution for the flow
both before and after collapse is given in Fig. 10-4,
obtained by the methods of Sees. VII and VIII.

I 1 I 1 I 1 1 ! 1 I I
0.8

0.6
1 .

WUTF3N OF 6/10/T5
RAREFACTFJN WITH SIMILARITY FITTING

1
~ .3.0 AR s0.005 . A,=O.025 COURANT=O.75

-“:~ “p%” ~
[REOUIREMENT:FIND SLOPE IN (Rl,R#

●*.*

WHERE ([?) -Rl, R2- 1)
.

.

0. 1. I I I 8 I I I I . I

0.01 0.02 004 0.06 0.0s 0.1 02 0.4 0.4 OS

R

Fig. 10-2.
Approach of u(R) from solution of the partial
differential equations to the similarity solu-
tion, using the discontinuous initial data, when
the free surface is at 0.01.

0.11 I I 1 1 1 I ! ! I 1
0.01 0,02 0.04 O.C%aos 01 0.2 0.4 0.6 0.8

R

Fig. 10-3.

With the free surface at 0.003.

In that way, it is tentatively concluded that the
outgoing shock travels with a speed z 1.484 times
the speed of the incoming free surface, at a given
radius, has Mach number x 1.783, compression ratio
P21P1z 1.518, and “entropy” ratio sz/sl, ~ 1.212. It
can in principle then be followed at later times by
the shock-fitting methods of Ref. 3, although that
has not yet been done for the present problem.

/’ Ic

~.UACH NUMBER= 1.783
-PRESSION ● 1.511?
41P,
WnlOlw RATIO.1212

*-’

-0.3

-0.:

T“
f’o

-0.6

\

Fig. 10-4.
V, C plane display of an entire similarity solu-
tion, for fi = 0.685, 7 = 3.
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XI. CONCLUSIONS

Satisfactory numerical methods have been
developed for handling singularities of the first three
kinds listed in Sec. II, namely the free surface, the
rarefaction head, and the region in between at early
times. The methods are described in Sees. III-V and
were shown to give about two orders of magnitude
greater accuracy than a comparison calculation by
conventional methods. The methods that have been
developed for singularities of the fourth and fifth
kind, namely the cavity collapse at late times and
the emergent shock at early times, are described in
Sees. VII-X; they are somewhat less satisfactory
from a theoretical point of view, owing to unresolved
questions whether the solution is asymptotically
self-similar, and, if so, what the values of the ap-
propriate parameters are.

A method of testing the asymptotic self-similarity
of the solution of the full problem is given, which is
superior to the, perhaps more obvious method of a
log-log plot of* Vs $.

The similarity theory has been developed in some
detail. The present work goes beyond that of
Hunter6 in that the entropy increase at the shock is
taken into account. It is shown that there is a two-
parameter family of self-similar solutions that con-
trasts with the collapsing shock problem of
Guderleyg and Butler, 10in which there is only one.
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