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ABSTRACT

The general problem of determining inelastic cross sections from sphere transmission
measurements is considered. Experimental problems encountered in this type of investigation
are discussed. Analytical methods of correcting for multiple scattering and other important
effects in spherical shells are presented. These methods are applied to the determination of
average inelastic cross sections of many materials for fission spectrum neutrons. Experi-
mental work with U2S8,Np2S7, and A127(n,p)M~7 threshold detectors is evaluated.
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DEFINITIONS*

Roman Alphabet

Symbol Definition

Atomic weight

Defined by Eq. 5.5
n + 1 coefficient in cosine series expansion of elastic scatter-

ing angular distribution function. Eq. 4.6
Distance between center of source and center of detector in a

sphere transmission experiment
Defined by Eq. 5.5
Total number of second or higher order neutron collisions in

the shell. Eq. 3.40
Total number of second or higher order inelastic collisions in

the shell. Eq. 3.41
Total number of second collisions preceded by first elastic

collisions. Eq. 4.2
Effective cross section for transferring neutrons from group

j to group i, considering all processes. Section 8.2 and
Eq. 8.15

Defined by Eq. 5.5
Distance from the surface of a spherical shell at which the

normal mode flux may be considered zero (extrapolated end
point) . Eq. 3.24

Number of neutrons that have at least one elastic collision.
Eq. 3.1

Number of neutrons that have n elastic collisions. Equation
3.11, for example

Denotes the neutron energy after 10SS of energy on either
elastic or inelastic collisions

Average energy after an elastic collision. Eq. 6.43
Probability of elastic scattering at angle @into solid angle dw.

Eq. 6.39
The fraction of neutrons making n collisions which make their

nth collision between r and r + dr. Eqs. 3.1, 3.9, 5.4, and 5.13
Neutron flux at point r, Eq. 4.7

G(e,r,rj,rj+l) Probability of a-second collision in subshell rj to rj+l if a
neutron scatters on its first collision at position r into
angle 8. Section 5.2

g Neutrons emitted per collision or 1 + f in neutron diffusion
theory. Eq. 3.20

* To assist the reader, equation and section numbers have been added to definitions in
some cases.
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H
In

Ji

J2

K

k

L

ltr
m

N(E) dE

‘k(r?e) du

P(r,O)

P(r)

Pn

1P180 2p180,p180,pn , pA

P(E’; dE’

p(z) dz

Qo

qi

R

Distance between points (~,yo) and (x,y,z) fn Fig. 6.’7
Number of events in which the collisions through n – 1 are

elastic and the nth collision is inelastic. Eqs. 2.4, 3.7, and
3.14

Defined in the same way as In except that total cross section
instead of transport cross section is used on the first col-
lisions. Eq. 4.4

Correction for finite source-to-detector distance to be sub-
tracted from observed transmission. Eqs. 6.9 and 6.10

Correction term for finite detector size inside the sphere to
be added to observed transmission. Eqs. 6.27 and 6.28

Ratio of the inside radius of sphere to the outside radiua,
rt/r2

One of the unknowns in the normal mode flux expression (Eq.
3.19) which is fixed by the choice of sphere size and trans-
port cross section

Defined by Eq. 2.16
Transport mean free path. Eq. 4.9
Distance traversed by a neutron that starts off-center in the

sphere in Fig. 6.7
Flux of neutrons between energy E and energy E + dE in the

fission spectrum
Number of neutrons per cubic centimeter that have their kth

collision at position r before escaping from the sphere and
whose direction of motion after this kth collision is tn solid
angle dw at angle 0

Probability that a neutron which starts at position r at an
angle 0 with the radius will escape from the sphere without
making any further collisions. Eq. 3.4

Average escape probability of a neutron starting at position r,
assuming isotropic scattering. Eq. 3.5

Average escape probability for neutrons emerging from the
nth elastic collision. Eqs. 3.8 and 3.12

Defined by Eq. 6.6
Defined by Eq. 6.7
Escape probabilities after the nth elastic collision, considering

an absorbing detector in the middle of the sphere. Section
6.3

Deffned in Section 6.3
Probability of neutrons escaping from the shell after only

elastic collisions and having an energy between E’ and
E’ + dE’. Section 6.5

Probabilities of emission of the neutron source and detection
of the neutron counter in energy group i per unit volume of
source and detector, respectively. For example, P~T is the
detector probability in group i for Np2S7counter.

Probabili@ that the total path through the shell of a neutron
originating at the sphere center is between z and z + dz,
considering only elastic collisions. Section 4.4 and Eq. 4.28

Number of neutrons escaping from the sphere with no col-
lisions. Eq. 6.19

Total number of neutrons escaping from the shell in group i.
Section 8.2 and Eq. 8.22

Perpendicular distance from detector center to line joining
points (q,YO) and (x,y,z). Fig. 6.7
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Tn

v~
v~
w, w’
w*

x
Y

Y(r,e)

< y(r) >
<y>

Y1

z

< a2(r) >

Ao

UD(E)

Inside radius of sphere
Outside radius of sphere
Defined by Eq. 6.40
Distance between dVi and dVz in Fig. 8.1
Ratio of elaatic transport cross section to total elastic cross

section, vet /uel. Eq. 3.38
Number of group i neutrona produced on the n + 1 collision in

a shell. Eq. 8.19
Number of neutrons escaping from a sphere after n elastic

transport collisions. Eqs. 2.9, 9.2, 3.42, and 3.43
Same as Tn but describing the firat collision with the total

cross section, not the transport cross section
Detector volume, used especially in Section 6.2
Source volume
Finite detector size correction factora. Eqa. 6.22 and 6,25
Probability of a second inelaatic collision in thin shell ap-

proximation. Eq. 2.6
Shell thickneaa, rz – rl
Effective shell thickness for case of very sharply peaked

elaatic scattering angular distribution. Eq. 4.27
Distance traveled through the shell material to the edge of the

shell by a neutron scattered at point r through angle 19.
Eq. 2.9

Average of y(r,tl) over angle 0. Eq. 2.10
Average of y(r,e) over angle 0 and r. Eq. 2.16
One half the cylindrical detector height in the finite detector

size correction
(r – ri) = X2. Eq. 2.13

Greek Alphabet

Statistical average of @zover all possible neutron patha taken
at position r. Eq. 4.34

Phaae shtft. Eq. 3.19
Reduced efficiency for counter aaymmetry correction. Sec-

tion 6.4
Error in inelaatic croaa section becauae of effect of energy

Ioaa on elaatic collisions. Eqs. 6.37, 6.41, and 6.42
Average aquared deflection of a neutron on an elaatic collision
Mean free path for neutron detection in counter
Cosine @
Average number of neutrona per fission produced by a neutron

in energy group i
The escape probability after the firat elaatic collision if total

cross aectiona are used to specify the number of first col-
lisions. Eqs. 4.5 and 5.15

One group total, inelaatic collision (capture plus inelastic
scattering), elaatic, tranaport, and elaatic tranaport cross
aectiona

Tranaport, inelaatic scattering, capture, and elaatic tranaport
cross aectiona for energy group i. For this multi-group
notation, inelastic scattering and capture are separated

Neutron detector aenaitivity for energy E I
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Uy

d%&

Average effective elastic cross section for a continuous
spectrum counttng in a threshold detector. Eq. 7.8

Average total, inelastic collision, and elastic cross sections
for continuous spectrum neutrons counting in a given threshold
detector. Eqs, 7.7, 7.5, and 6.38, respectively.

Inelastic scattering cross section from energy group j to group i
Flux at arbitrary point in space. Section 6.2
Fraction of neutrons from central source in sphere in energy

group i, in our case f i. Section 8.2
Normal mode flux tn sphere. Eq. 3.19
Integrated ‘one group flux over the volume of the sphere. Neutrons

in this flux must have made at least one elastic collision.
Section 3.6 and Eq. 3.48

Integrated flux of energy group i over the volume of the sphere.
Neutrons in this flux have made from zero to an infinite
number of collisions
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Chapter 1

INTRODUCTION

1.1 Purposes of the Investigation

A great need exists for information on the inelastic scattering of fast neutrons, both for the
theory of the compound nucleus and for the calculation of the degradation of fission neutrons in
a material. The present investigation was undertaken primarily to supply information of an in-
tegral nature on the inelastic scattering of fission spectrum neutrons. At the same time, re-
sults are obtained on the energy dependence of inelastic cross sections in various regions of
the periodic table.

The “sphere method” was used in these experiments because it appeared to be the method
most compatible with experimental conditions at the reactor. By detailed theoretical investiga-
tions, it was shown that this method permits a very accurate evaluation of the inelastic cross
section.

1.2 Reciprocity Theorem

The experimental work discussed in this report was performed with an external fission
source and a detector which was surrounded with a sphere of material for a transmission de-
termination. In the theoretical treatment, however, we will assume that the source is inside the
sphere and the detector outside. This is a considerable convenience for following the paths of
neutrons from the shell. It has been shown in LA-1428i that one can obtain the same sphere
transmission by surrounding either the source or the detector. Specifically, the reciprocity
theorem states: The number of neutrons coming from an isotropic source at tie center of a
spherical shell of matter and detected in an isotropic detector outside the sphere is equal to the
number detected if the positions of source and detector are interchanged.

It should be pointed out that if one performs experiments with a large anisotropic counter
inside a sphere and an anisotropic source outside the sphere, the transmission computed by as-
suming an internal source must be done as follows: The internal source must have the same
shape and absorption characteristics as the counter it replaces, and the external counter must
have the same shape and characteristic angular sensitivity as the source it replaces.

1.3 The Sphere Method

The method of spherical shells has been used by a large number of experimenters. Quali-
tatively the method works as follows:

If we place an isotropic threshold neutron dete$tor at a large distance from an isotropic
source and count with and without a sphere of material surrounding the source, the resulting
transmission

-17-



~ . counts (sphere on)
counts (sphere off)

is a measure of the amount of inelastic scattering.
We can think of this as follows: With only elastic scattering in a shell, a transmission of

unity will be obtained, because of spherical symmetry. Therefore, when both elastic and inelas-
tic collisions occur in the shell, one might tend to believe that the number of inelastic collisions
is more or less independent of the elastic cross section. If this were true, the elastic scatter-
ing would again give essentially no effect, and only the inelastic cross section would be impor-
tant in determining the sphere transmission.

On the basis of this argument, it has often been assumed that the transmission is given by
an exponential

(1.1)

where X is the shell thickness. In particular, this has been assumed by PhiUips et al. z at Los
Alamos in scattering experiments with 14 Mev neutrons. They justify the use of the exponential
by pointing out that the elastic scattering angular distribution has a very pronounced forward
peak at 14 Mev. This means that an elastic scattering does not lengthen the paths traveled by
neutrons in escaping from the sphere and, hence, does not act like a scattering at all. There-
fore, the inelastic cross section only is important in determining the transmission of a sphere.
Also, they have varied the sphere thickness over a limited range and have observed essentially
the same inelastic cross section at all thicknesses.

The argument of Phillips et al.2 may be reasonably well justified at 14 Mev (since the in-
elastic cross section is large and the elastic transport cross section small). However, it cer-
tainly is not sufficient at lower energies, around 1 Mev, where the elastic cross section, as
well as the average scattering angle, is much larger. Equation 1.1 will break down when the in-
elastic cross section becomes small compared to the elastic transport cross section, and this
is the rule, rather than the exception, at energies around 1 Mev.

Of course, in any case, the first term in the expansion of Eq. 1.1 in a power series will be
valid, viz.

T = l–uinX (1.2)

for very thin shells, regardless of the elastic scattering cross section. For this reason, some
experimenters have used very thin shells. The disadvantage of this is obvious; for the sake of
statistical accuracy, shells with a transmission of 30 to 70 percent are desirable. Moreover,
Eq. 1.2 does not indicate how thin the shells have to be for Eq. 1.2 to be valid. Our theory, in
Chapter 2, will show that~ shells need to be much thinner than might be expected.

It is clearly desirable to have a theory which is valid also for thicker shells. Several ap-
proaches to this problem have been advanced in the past. H. H. Barschalls has suggested the
use of an effective path length through the shell instead of the thickness X in Eq. 1.1. Amaldi
et al.’ have formulated a correction factor F(X) for multiple scattering. The shell transmis-
sion is written

T = F(X) e-ainx (1.3)

Szilard et al.s have used a method of interpreting sphere transmission data which is simi-
lar to the methods presented in Chapters 3 and 4. They conclude that the failure of their theory
to give the same cross sectiou for all shell thicknesses of the same element may be due to a
“hardening” of the spectrum.

A tested theory to use in the evaluation of fairly thick spherical shells is clearly needed at
present. This will be developed in Chapters 3 and 4. A large amount of experimental work was
performed to test its validity under a wide variety of conditions.
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In addition, cross sections for inelastic scattering from a fission neutron spectrum to a
point below several detector energy thresholds have been measured and are discussed in Chap-
tere 11, 12, 13, and 14 of this report. These measurements were performed for about 15 ele-
ments.

The meaning of the average inelastic cross sections, which were measured with energy
threshold detectors and the fission neutron spectrum, is discussed in Chapter 7.
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Chapter 2

THIN-SHELL THEORY

A theoretical analysis of the thin shell is particularly instructive because it shows, by a
purely analytical argument, the large effect of elastic scattering on the transmission. To show
this effect, it is clearly necessary to calculate the transmission at least uptoorder X2, where
Xisthethicknees of theshell; for, in the first order, thetransmission isgivenby Eq. 1.2. It
has been assumed in Eq. 1.2, as it will be~he following, that inelastic scattering is the ~
process which renders neutrons undetectable (i.e., that neutron capture is negligibly small).
Otherwise, the capture cross section should be added to that for inelastic scattering.

To obtain Eq. 1.2, as well as equations in this chapter, we make use of the reciprocity
theorem; i.e., we assume the source to be in the center of the spherical shell. The shell
thickness is

X=r2–ri (2.1)

where rz is the outer radius, and ri the inner radius. The macroscopic cross section, meas-
ured in cm-i, is used for Oin in Eq. 1.2, as it is for all cross sections in this report, unless
otherwise indicated.

Elastic scattering has no influence on the transmission in the linear approximation Eq.
1.2 because in this approximation we have only one collision, which maybe either elastic or
inelastic, so that certainly T is of the form

T = 1 – (auel + buin) (2.2)

where a and b are constant coefficients. But in the absence of inelastic scattering, elastic
scattering does not change the number of neutrons transmitted, hence a = O.

Now let us proceed to a better approximation. We will assume throughout that one neutron
is emitted by the source. Then the number of neutrons which come out of the sphere without
any collision is exactly—

TO = e-%x (2.3)

where at is the total cross section. The number of first collisions is 1- TO, and the number
of inelastic first collisions is therefore

Ii = ()~ (1 - TO) (2.4)

Expanding up to order X2, we get

L = qn+inutX2 + . . . (2.5)
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Wenow wish to calculate, toorder X2, the number of neutrons which are elastically scat-
teredon their first collision mdtheninelastically on the second. Forthe sake of generality,
we assume that the elastic scattering is not isotropic, and define u(0) dw as the differential
cross section for elastic scattering into solid angle du at angle 0. The elastic scattering is
illustrated in Fig. 2.1.

Theprobability that a neutron, after its first elastic scattering at r, is subsequently scat-
teredinelasticall ydepend sonthedistance y(r,O) which it hasto travel after its first scat-
tering, before escaping from the sphere. In our approximation, it is sufficient to set this
probability equal to

W* = ‘in Y(r,e) (2.6)

Then the number of second inelastic scattering is

12 = Uin ~04r~~ ael(0) dw dr y(r,fl (2.7)

This expression is, of course, proportional to X2, and the transmission to order X2 is

T= I–I*– I* (2.8)

For an arbitrary angular distribution of elastic scattering, Iz would have to be found nu-
merically. However, to demonstrate the effect of elastic collisions, we shall calculate it with
isotropic elastic scattering. We shall show in Chapter 4 that even for very anisotropic scat-
tering it is a good approximation to replace the actual scattering by isotropic scattering, if at
the same time the total cross section is replaced by the transport cross section. This makes
the present calculation quite realistic. From geometry

y(r, f9)=–r cos 9 + ~r~–r= sin2 0–a dr~–rz sin2 0

where a=2 if coses —F l–~

(2.9)

and a=O if coso2– r 1–$

Geometrically, a = 2 if, and only if, the neutron path after scattering penetrates into the in-
terior cavity of the shell (see Fig. 2.2).

Fig. 2.2

If the scattering is isotropic, Eq. 2.9 can be averaged over solid angle and gives for any r

4K
<y(r)> = ~

J4?l ~
y(r,e) dw
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x ~z–rz
q(r)7 = ~ + 24r () ()in & +r>h r+rl (2.10)

r–rl

For simplicity, let us assume now that the shell is thin, not only compared to a mean free
path, but also compared to its radius, i.e.

(2.11)

(2.12)

(2.13)

(2.14)

The two last terms in the square bracket always give a positive contribution, which varies
from O at Z = O and 1, to in 2 at Z = ~z. Even the maximum value, in 2, is small compared with
in (2 r2/X) under the assumption of Eq. 2.11. Therefore we find The average length of the path
of a scattered neutron, ~(r)>, is almost independent of the location of the scattering, r. It is
largest if the scattering occurs in the middle of the shell, smallest if it occurs at the outer or
inner edge. As a consequence, the probability of making an inelastic collision after an elastic
one is almost independent of the point where the elastic collision occurs.

Some understanding of this result, and of the form of Eq. 2.14, may be obtained as follows:
Consider the neutrons starting from r in direction 9, and those in direction r -8. The sum of
their paths, for a thin shell, is approximately twice the path through a slab of thickness~at
angle f3to the normal, i.e.

2x
Cos e

(2.15)

This is independent of Z, the starting position within the shell (Eq. 2.13). Averaging Eq. 2.15
over the solid angle gives a logarithmic divergence which is cut off by the sphericity when
cos 0 N X/rz; hence the appearance of In (r2/X) in Eq. 2.14.

Averaging Eq. 2.14 over Z (i. e., over r) gives +1/, from each of the two last terms and
hence

‘y’=:[~++)l+ (2.16)

where the factor L is clearly quite large, usually between 3 and 4, and largest for the thinnest
shells. The number of second inelastic collisions (i.e., Iz, Eq. 2.7) is obtained using Eq. 2.16
for cy>, the average path length in the shell after a collision

AU a X2L12=2 inel (2.17)

The transmission (Eq. 2.8) is then, to order X2
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Then Eq. 2.10 simplifies to

Let us now set

r- rl = XZ

where Z runs from zero to one.

() 2r

()
~ --?Z2-- ++ln —

r2—r r—rl

/

Then Eq. 2.12 may be written as

cy(r)> = ~ [l+ln(~) -Zln Z-(l– Z)ln(l– Z)1
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T = 1 – UinX + ; uinX2(ut – uelL) + . . . (2.18)

For an ardsotropic scattering angular distribution, instead of an isotropic, one should use the
elastic transport cross section tset instead of Uel in Eq. 2.18.

The coefficient of X2 in this formula is very interesting indeed. If the scattering is almost
entirely inelastic, then

T=l–uinX+$#nX:+ . . . (2.19)

which is the well-known expansion of the exponential. In this case, the X2 term is positive,
i.e., the curve of T vs X has the familiar upward bend (Fig. 2.3). But if the

T
T

x x

Fig. 2.3 — Scattering almost entirely inelastic. Fig. 2.4—Scattering mostly elastic.

scattering is mostly elastic, then because of a large value of L, aelL is greater than sin, and
the X2 term in Eq. 2.18 is negative. Then the curve of transmission vs thickness bends down-
ward as illustrated in Fig. 2.4. Clearly, in this case, it must be entirely wrong to evaluate
transmission experiments by assuming

T = e-alnx

The choice of the exponential formula is particularly bad because the negative coefficient of
X2 in Eq. 2.18 is apt to be large, much larger than the positive factor in the “elementary”
formula (Eq. 2.19), both because L >1 and because uel > Uin.

Obviously, the curve of T vs X cannot bend downward indefinitely. There must be an
inflection point and finally a quasi-exponential behavior, caused by higher order terms as
shown schematically in Fig. 2.4. Of course, at no point (except for extremely thin shells) can
the inelastic cross section be derived from the transmission by the exponential formula,

The reason for the behavior of Eq. 2.18 is, of course, that the path of a neutron in the
shell is greatly increased by elastic scattering. Suppose a neutron makes a collision at some
point r in the shell: then, if it continued radially outward, it would still go a distance r2 - r,
and if we average this quantity over all scattering positions r, we get ‘/2 X. On the other hand,
if the neutron is scattered in a random direction at r, then its average path in the shell before
leaving is ‘/2 X L, according to Eq. 2.16, which is L times (3 to 4 times) longer. Clearly, by
going more or less tangentially, the neutron must go a longer distance in the shell than if it
went radially.

-24-



The coefficient of X2 will be negative as long aa

0=1 1
—>—
at L.

(2.20)

Thus relatively small inelastic scattering (i/, or ‘/$ of total) will suffice to make the trans-
mission curve bend initiaIly downward,

Let us examine now how thin the shell muet be made if one wants to avoid multiple-
scattertng corrections: Aseuming uel > Uin, the parenthesis in Eq. 2.18 is about –oel(L - 1).
Therefore, tf the tnelastic cross section is deduced f rom a measured transmission by means
of the exponential formula (Eq. 1. I) or the linear formula (Eq. 1.2), the relative error in it,
according to Eq. 2.18, will be

1
~ Oel (L - 1)X (2.21)

The inelastic cross section deduced from an elementary analysis will always be too large. If
we want to make the error (Eq. 2.21) equal to 5 percent, and if L = 4, then the probability of
an elastic scattering in the shell must be kept down to 3 percent. In the region of 1 or 2 Mev,
Uin is about ‘/2 or l/s of Oel for most substances; therefore the probability of inelastic scattering
must be about 1 percent! To measure the transmission in such a case with efficient accuracy
is virtually impossible.

From the previous discussion it can be seen that the elementary formulae should not, in
general, be used to evaluate sphere transmission experiments. A more nearly correct method
of computing inelastic cross sections is to use Eq. 2.8 or 2.18. These equations, however, have
a limited range of application and should not be used in the case of a thick shell. Some specific
examples in which transmissions computed according to Eq. 2.18 are compared with transmis-
sions determined from a more detailed theory are given in Chapter 4.
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Chapter 3

THICK-SHELL THEORY AND ISOTROPIC SCATTERING

We shall now treat the case of a shell of arbitrary thickness in which an arbitrary number
of collisions may take place. However, we shall still assume that the thickness is of the order
of one mean free path, rather than many. This means that the density of neutrons from the—
source will not fall off too much from the inside of the shell to the outside — an assumption
which will be useful in the theory. The case of very thick shells could be treated by diffusion
theory, but it has practical importance for measurements only when it is desired to measure
extremely small absorption cross sections.

The theory will be greatly simplified if we assume isotropic scattering. Aa will be shown
in Chapter 4, this assumption is a good approximation if the elastic transport cross section is
used for the elastic scattering cross section. The error thus made in the inelastic cross sec-
tion is of the order of 1 percent. We shall, therefore, use in this sectton the total transport
cross section utr and the elastic transport cross section ~et, rather than the total cross section
at and the total elastic cross section ~el. We further assume, as before, that the detector does
not respond to inelastically scattered neutrons.

3.1 Number of Second Collisions

Let us consider the neutrons which have suffered one elastic collision in the shell. Their
number (for one source neutron) is, similar to Eq. 2.4

with

The fraction which suffer their first collision between r and r + dr is

‘Utr(r-rl)mtr dr
fi(r) dr = e

l–TO

(s.1)

(9.2)

(3.3)

A neutron which starts at position r at an angle 8 with the radius will have a probability

P(r, O) = e–am Y(rIe) (3.4)

of escaping from the sphere without making any further collisions. Here y(r, f3) is the distance
travelled in the shell (if there is no collision), as shown in Figs. 2.1 and 2.2 and as calculated
in Eq. 2.9. If the scattering is isotropic, we are interested in the average escape probability
of a neutron starting at r
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P(r) = & , P(r, 0) du (3.5)

The probability that such a neutron makes at least a second collision is then 1 – P(r), and the
probability that this neutron makes a second collision which is inelastic, is

‘* [1 - P(r)]

The total number of inelastic second scattering is then

(3.6)

12=Ei~
s

“f,(r) dr [1 – P(r)]
‘tr ~,

(3.7)

It is convenient to introduce the average escape probability for neutrons emerging from first
collisions

Pi = ~r’fi(r) dr P(r)
II

Then, if we remember that by definition

~~i(r) dr = 1

we find

12= E##l-Pi)

3.2 Number of Third and Higher Order Collisions

The number of second elastic collisions is

Ez=Ei~(l– Pi)

(3.8)

(3.9)

(3.10)

(3.11)

Suppose we knew the spatial distribution of these neutrons, fz(r) dr. Then we could define an
average escape probability for neutrons after the second collision

P2 = ~~z(r) dr P(r) (3.12)

The number of neutrons which are inelastically scattered on their third collision is then

13= E##l-Pz)

= Ei ‘& :: (1 – PI)(l – P2) (3.13)

This may be continued in an obvious way, giving for inelastic collisions on the n + 1 collision:

I
()

~+1= Elfi ~
‘tr ‘tr

‘-1(1 -Pi)(l-P2)... (l– Pn) (3.14)

The difficulty here lies clearly in the calculation of spatial neutron distributions. It is
possible, though troublesome, to obtain this for the second collisions, fz(r), but it would be
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prohibitive to try to calculate the distributions for higher collisions. However, two circum-
stances help at this crucial point:

(1) The spatial distribution of successive collisions converges to a limiting distribution
which we shall call fro(r), and this convergence is quite rapid. This will be discussed in Sec-
tion 3.3.

(2) The escape probability P(r) does not depend very much on r, and therefore the average
escape probability Pn is not very sensitive to the assumed distribution function f~(r).

Concerning statement 2, we remember the result of Eq. 2.14 which showed, at least for a
thin shell, that 1 – P(r) [actually< y(r)> in Eq. 2.14] varies only by about 20 percent from maxi-
mum to minimum as a function of r. Any “reasonable” distribution function ~(r) of the starting
points of the neutrons will give the same average (1 – P) within a few percent.

For thicker shells, of the order of one mean free path, the dependence on r maybe slightly
greater. Consider, for example, neutrons starting at the outer and inner edges of the shell, rz
and rl, respectively. They will, on the whole, follow the same paths, such as that shown in
Fig. 3.1.

Fig. 3.1

Let y be the length of a typical path through the material on one traversal of the shell.
Then the probability of a collision within the shell is

1 – P(ri,O) = 1 – e-uuy I (3.15)

if the neutron starts from the inside (point A) going either “up” or “down.” If it starts from the
outside (point B) and goes “up,” the neutron will not traverse any material, giving zero collision
probability, while if it starts “down,” we get

1 – P’(r2,0) = 1 – e- 2uuy

The average between “up” and “down” is

1 – P(r2,0) =+(1 – e–zut,y)

(3.16)

(3.17)

If we expand Eqs. 3.15 and 3.17 in powers of y, the linear terms are equal

1- P(r1,6) = 1 – P(r2,6) = atiy (3.18)

This corresponds to the result in Eq. 2.14, where the inner and outer edge gave equal values of
<y(r)>. However, for thicker shells, Eq. 3.15 is clearly greater than Eq. 3.17. The maximum
collision probability, which for thin shells lies at the middle of the shell, moves with increas-
ing shell thickness towards the inside edge. At the same time, the variation of 1 – P(r) with r
is apt to increase, but even for very thick shells it is not likely to exceed a factor of 2 (com-
pare Eqs. 3.15 and 3.17).

In Fig. 3.2 we give 1 – P(r) as a function of r for some typical cases.
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Fig. 3.2 — Plot of 1- P(r), the probability of making another collision for neutrons scattered
isotropically at various points in spherical shells, with ri/r2 = 0.8.
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3.3 Normal Mode Distribution

Statement 1 (page 28) clatms that the spatial distribution of the nth collision, f ~(r), tends to
a limit as n increases. To see this, and to calculate this limit, let us make the following con-
sideration: For given fn, the spatial distribution of the next collisions, fn + I (r), is completely
determined, and does not change if we increase the absolute number of neutrons emitted in each
of the nth collisions. Imagine this is done, e.g., by ascribing to the material a fictitious fission
cross section, such that in each collision not one neutron is emitted, but g neutrons. * Then we
can choose g in such a way that, in the limit of large n, the total number of neutrons making an
nth and the n + 1 collision is the same. Then our shell will be just critical, and the spatial dis-
tribution of neutrons will be that characteristic of a critical assembly of the given shell geom-
etry, i.e., the fundamental normal mode of the shelL We have shown, the% that ~so in our
actual problem, with only elastic and inelastic collisions and no fission, the neutron distribution
tends toward the normal mode.

This argument does not show, of course, how many collisions are required to reach the
normal mode. This depends on the deviation of the dist ributton of first collisions, f l(r), from
the normal mode. Fortunately, this deviation usually is not very great, especially if the thick-
ness of the shell is not more than about one mean free path. In Fig. 3.3 we compare the distri-
bution of first collisions with the normal mode and with a histogram of the distribution of neu-
trons that have made a second collision for a typical case. All collision distributions are
normalized to one collision in the shell. If fl does not differ much from fm, then fz, ft~ etc. ~
will, of course, be even closer to f m.

To calculate the normal mode distribution, we use the method of the extrapolated end point.
We assume that within the shell the neutron flux distribution is

@m“
sin k (r + 6)

r
(3.19)

where k is related in the usual manner of integral theory to the fictitious number of neutrons
produced per collision, g, viz.

and all distances are in centimeters.
To determine k and the “phase shift” 6, we use the following boundary conditions:
(1) At the inner radius, we assume the slope of @m to be zero

d$m _ ~
dr

at rl

krt cot [k(ri + 6)] = 1

(3.20)

(3.21)

(3.22)

This boundary condition is not exact but should ensure reasonably well that there is no net flux,
except for source neutrons, through the inner surface of the sphere r i.

(2) At the outer radius, we have the condition of the extrapolated end point

sink(r2+6+D)=0 (3.23)

*g is usually denoted by 1 + f in neutron diffusion theory. This f is not used explicitly in
this report.

I
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Figure 3.3 — l?adial distribution of neutrons that have made first collisions, second colli-
sions, and normal mode collisions for a shell with utrX = 0.8 and ri/r2 = 0.8.
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where D is the extrapolation distance for which Frankel and Nelson give the very good approxi-
mate formula*

D = 0.71

g ‘tr
(3.24)

From Eq. %23, we have k(r2 + 5 + D) = m, and Eq. 3.22 becomes

kri cot [z–k(x + D)] = 1 (3.25)

It maybe noted that

()kD = 0.71 arctan & (9.26)

Rearranging Eq. 3.25 and substituting Eq. 3.26

()kx + 0.71 arctan -& + arctan (krl) = u (3.27)

In practice, Eq. 3.27 was solved numerically by assuming values of k until the desired X and ri
would satisfy the equation.

For very thin shells, k becomes large, and arctan (k/utr) = 7r/2. Then the phase of the sine
at the outer edge is

()k(r2 + 6) = u – kD = 1.29 ~ = 116° (9.28)

which is now independent of X. If X << ri, then the phase at the inner edge is

and therefore

kX=0.29T+2=0.45+~
2 krt kri

(3.29)

(9.30)

from which k is easily determined.
With the neutron distribution given by the normal mode r2@m (@m from Eq. 3.19) the es-

cape probability can be calculated. In all cases we have considered, Pm does not differ greatly
from Pi, the escape probability after one collision. This problem is considered in more detail
in Section 5.4.

3.4 Calculation of Transmission

If we assume that all higher escape probabilities are equal to that for the normal mode

P2=P~=... =Pm (3.31)

according to Eq. 3.14, the inelastic collision probabilities after the first collision (n z 1,
n + 1 = collision number) are given by

*This formula appeared originally in 1944 in a Los Alamos Scientific Laboratory rePort,

now available as AECD-3497.

-32-



In+l=E,(~)(l-P*)&~-’(l_ pm)’-’ (3.32)

This series can be summed and gives

.

xI
E1(ah/utr)(l – Pl) (9.33)n + 1= 1 _ (uti/atr)(l – Pm)

n=l
Eiuin(l – Pi).
u~ + ue~ Pm

(3.34)

We insert Ei from Eq. 3.1 and the first inelastic collisions from Eq. 2.4 and find thus the
total number of inelastic collisions, which is equal to the number of neutrons which fail to be
transmitted

[
l–T=(l– TO):~ 1+

u~t (1 – P,)
u~ + UetPm1 (3.35)

Since we have actually computed curves of escape probability for neutrons which have
made a second elastic transport collision, an alternate and slightly more accurate formula for
sphere transmission is

[

(1 – PI)(1 -P )&et
1-T =(l-TO)% l+~(l-Pi) +atr(oti+aet\m) 1 (3.36)

Equations 3.35 and 3.36 are our final formulas. These formulas can be simplified if we
assume that the escape probability is the same for the first collision, second collision, and
the normal mode: Pi = P2 = Pm. Then Eqs. 3.35 and 3.36 reduce to

(I–T=(l– TO) ah
Uin + UetPm )

(3.37)

This formula allows a simple physical interpretation. The total number of neutrons which “are
supplied” to the shell is 1 – TO. These can be removed from the shell by two processes, either
by inelastic scattering, or by escape. In a given collision, the probability of inelastic scattering
is tJti, that of elastic scattering followed by escape is uet Pm. This gives for the fraction scat-
tered inelastically the expression in Eq. 3.37.

3.5 Analysis of Experiments

Let us assume the total transport cross section Utr is known, and u~ is to be determined.
Then we first calculate Pi and Pm as a function of utr, rl and r2; this is done in Chapter 5.
TO=e - uax is immediately ob~ed. Experiment @ves 1 – T. Since CA = utr – Cin, Eq. 3.35
contains only the one unknown Uin, for which it can easily be solved. -”

In practice, other experiments give not atr, but the total cross section q. In addition,
Jurney and Zabelg$ *5have measured the angular distribu~of the elastically scattered neu-
trons (for most of the neutron spectra and elements of int,erest here). From these data we
can ,obtain the ratio of elastic transport to total elastic cross section, vfz.

~muel(0) (1 – cos 0) sin 0 dOS–”et -
‘el Jr Oel (8) Sill 8 do

We then write

(3.38)

Uet = (Ut– ah) s
(3.39)

Crtr = Uet + cr~
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which reduces all cross sections in Eqs. 3.35, 3.36, and 3.37 to the measured at and the un-
known Uin. The escape probabilities Pi, P2, and Pm, as well as TO, depend on Utr and thus be-
come functions of the unknown uin. The best way to solve Eq. 3.35 is then by trial and error,
i.e., to calculate the right hand side for a few assumed values of Uin until agreement with the
observed 1 – T is achieved.

3.6 Alternative Derivation

Instead of considering inelastic scattering on the second, third, and subsequent collisions,
we may introduce the total flux of neutrons in the shell which have suffered at least one elastic
collision. Let us integrate this flux over the entire volume of the shell, and call the result W,
assuming that the source emits one neutron per second. The spatial distribution of f.he collisions
1s again assumed to be fro(r) dr so that Wm/4rr2 is the actual flux (per square centimeter per
second) at r. The number of transport collisions per cubic centimeter per second is then
Wtr~/4rr2, and the total number of second or higher collisions per second is

c~t = ‘Iqr (s.40)

because of the normalization of fm.
Of the collisions (Eq. 3.40), the number

c~ = win (3.41)

will be inelastic, and ‘laet elastic. Of the latter neutrons, a fraction Pm will escape, so that the
number of neutrons escaping after two or more elastic transport collisions is

T >2 = Waet Pm (3.42)

To this we add the neutrons escaping after one elastic scattering

()‘et piTi= (l-TO) ~

and the number escaping without any scattering, To. This gives for the total transmission

(3.43)

T= TO+ T1+ T>* (3.44)

This expression for the transmission still contains in T>2, the unknown integrated flux ~.
To eliminate w, we note that we can also calculate the total number of inelastically scat-

tered neutrons, which, of course, equals 1- T. We know that Eq. 3.41 represents the total
number of inelastic collisions on the second collision or later. We need only add the number
of first inelastic collisions

()Ii= (l-To) ~ (3.45)

which gives

()
l–T=(l– TO) ~ + qa~

On the other hand, Eqs. 3.42 to 3.44 give

l-T=(l-To)o-*)-yaetpm

(3.46)

(3.47)
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Equating the two expressions for 1- T gives

~ = (1 – TO)aet(l – Pi)

‘tr (Uin + ‘et ‘m )

and inserting this into Eq. 3.46 gives

( )[l–T=(l– TO) ~ l+oet(l-pi)
Oh + Uet Pm1

(3.48)

(3.49)

This is identical with Eq. 3.35. The present derivation is the mathematical extension of the
physical argument at the end of Section 3.4.
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Chapter 4

ANISOTROPIC SCATTERING AND JUSTIFICATION OF TRANSPORT APPROXIMATION

4.1 Outline of Methods

In principle, the theory with anisotropic scattering is simple. The number of neutrons
elastically scattered on the first collision in the shell at position r into direction 0 is

Uel (0) dw dr e-az(r-rl) (4.1)

where now the total cross section is used rather than the transport. The fraction of these which
suffer a second collision is [1 – P(r, o)], where P is given by Eq. 3.4. Therefore the total
number of second collisions that are preceded by first elastic collisions is

Cz = ~ e-ut(r-rl) dr Uel (0) du[l - P(ri6)] (4.2)

Of these, C2(u~/at ) are inelastic, the rest elastic. The latter agatn have a certain angular dis-
tribution, more complicated than after the first collision, and their further fate may be treated
similarly.

In calculating the total transmission, it must be remembered that the number of neutrons
transmitted without collisions is now

(4.3)

rather than To (Eq. 3.2) ,i.e., here also the total cross section must be substituted for the trans-
port. Likewise, the number of inelastic scattering on the first collision is

(4.4)

Both T~ and Ii are less than their transport-theory counterparts, TOand Ii.
To calculate the number of second and higher order collisions, two different methods have

been chosen, viz.
(a) The angular distribution of elastic scattering has been taken into account on all colli-

sions. In this case, the only feasible method is Monte Carlo. The results of Monte Carlo cal-
culations for typical cases will be given below; the method of calculation is described in
LA-1583.7

(b) We have assumed that, after the second collision, the neutrons are distributed ran-
domly in direction, and according to the normal mode (Section 3.3) in space. Then, after the
first collision, we can use the theory of Chapter 3, i.e., isotropio elastic scattering and trans-
port cross sections. To be in accord with the assumption of isotropic second scattering, we
must then also calculate the escape probability P(r, f?)in Eq. 4.2 by using the transport cross
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section. The total cross section and the actual angular distribution are used only in the de-
scription of the first collision.

The formula for transmission of a sphere in this approximation is then (similar to
Eq. “ 3.36)

[
l- T= (l-T@ l+w(l-mi) + (1 - 7r,)(l - P*) u:~

at Utr Utr (u~ + u~t Pm) 1 (4.5)

The computation of the escape probability nl, essentially 1- C2 (Eq. 4.2) except for the nor-
malization at/(1 – To Uel, is discussed in Section 5.5.

To qualitatively justify the procedure (b), we note that those neutrons which are scattered
through large angles on their first collision will afterwards travel long distances through the
material and will thus have an enhanced chance of making a second collision. Moreover, the
radius vector from the source to the point of second scattering is more or less randomly ori-
ented relative to the radius vector to the point of first scattering, if the neutron has a long
path between first and second collisions. Considering both of these arguments, we conclude
that, even though the differential scattering cross section Uel(tl is strongly peaked forward,
the flux of neutrons available for second collisions will be approximately random tn direction
relative to the radial direction at the point of second collision. Therefore, the neutrons emerg-
ing from the second collision will also tend to be isotropic in orientation relative to the radius
vector.

Procedures (a) and (b) can then be compared witix
(c) Theory using the transport cross section and isotropic elastic scattering for the first

and all later collisions, i.e., use the method of Chapter 3.

4.2 Numerical Test of Trans~ort Theorv

To test the transport theory, we have calculated the transmission for 11 different cases,
using both the “correct” procedure (b) and the transport procedure. Four different angular
distributions for elastic scattering were used in the computations in examples 1 to 8. Three
assumed distributions were of the form

crel (0) = a. + al cos 0 + az cos2 0 + as Coss 8 + a4 cos’ 0 + as Coss @ (4.6)

The coefficients were assumed as follows:

Cases 1-5 Case 6 Cases 7–8

a. 0.115 0.059 0.311
al 0.066 0.030 0.625
az –0.250 -0.258 -2.283
a9 -0.382 0.010 -3.827
a, 0.954 1.210 4.107
as 1.040 0.953 5.394

Thus, cases 1 to 5 correspond to a moderate peak in the forward direction, 7 and 8 to a stronger
peak, and 6 to an even more pronounced peak. In fact, cases 1 to 5 correspond rather closely
to a measured distribution for fission neutrons in iron, and 7 and 8 to that for uranium.6 The
angular distribution used in case 6 was chosen from the continuum theory predictions for about
4.0 Mev neutrons and A = 45. This is thought to be a rather extreme case, being far more for-
ward peaked than almost all distributions used in our analysis and even much more forward
peaked than distributions recently measured at 4.0 Mev neutron energy.a Various thicknesses
of the shell and various ratios of inner to outer radius were considered and are listed in
Table 4.1.
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As an extremely unfavorable case for the transport approxtmatton, we have also consid-
ered an angular distribution tn which the neutrons are scattered either directly forward or
dtrectly backward, 0 = O or 180°, with equal probability. In this case, of course, transport and
total cross section are equal (cases 9, 10, 11).

In the “reasonable” cases 1 to 8, the agreement between procedures (b) and (c) is very
close indeed, as shown by Table 4.1. A good way to show the agreement is to calculate the
transmission by the “correct” method (b), using the assumed thickness, cross sections and
angular distributio~ and then to deduce an apparent inelastic cross section from this calcu-
lated transmission by use of method (c). Table 4.1 shows that the inelastic cross section de-
duced from (c) agrees to within 2 percent (always in the same direction) with the “correct”
cross section from methcd (b), for cases 1 through 8. It is also clear from the table that the
method of Chapter 2, method (d), does not give accurate results below about 90 percent trans-
mission for the cases tried. For the lowest transmission calculated using Eq. 2.18, the error
made in inelastic cross section is about 10 percent.

In the abnormal cases 9, 10 and 11, the error is as great as 14 percent. ‘l%is is not sur-
prising. The assumed scattering in these cases, straight backward, does not give rise to a
very long path of the neutrons through the shell, on the average, 3/2 times the thickness X.
Half of the scattering is assumed to go forward and thus does not lengthen the path at all
(average path after scattering = ~z X). Averaging between backward and forward scattering
gives a path after scattering equal to the shell thickness, far less than the average path after
isotropic scattering (except in case 9, where the shell is almost solid). Therefore, using the
transport assumption and the same cross sections, we expect much more chance for inelastic
collisions after the first collision, and a much smaller transmission, than ustng the “correct”
theory. Thts is borne out by Table 4.1. Conversely, if the inelastic cross section is deduced
from the “calculated” transmission by the transport method (c) as described in the last para-
graph, we get values that are too small. Fortunately, experimental angular distributions ordi-
narily do not have the behavior assumed in cases 9, 10, and 11, but are commonly peaked in
the forward direction.

To test the accuracy of method (b), E. D. Cashwell and C. J. Everett of LASL Group T-8,
and J. M. Kister, Group T-l’, have run four problems on the Los Alamos MANIAC with the
Monte Carlo metho~’ taking into account the exact angular distribution in all collisions, i.e.,
method (a). The three angular distributions used, as well as other specifications of the prob-
lem, are listed in Table 4.1.

The Monte Carlo transmissions were compared with those calculated from method (b),
and the agreement was wtthin 2 percent. The corresponding maximum error in the deduced in-
elastic cross section is about 2 percent (case 9, non-realistic angular distribution). We con-
sider this as an excellent empirical justification of method (b). Considering, then, method (b)
as established, the calculations reported in Table 4.1 justify also method (c), i.e., the use of
the transport cross section even for the ftrst collision, for a realistic angular distribution of
elastic scattering.

4.3 Analytical Justification

The considerations of the last section may be regarded as a justification of the transport
approximation by empirical mathematics. However, a more general and theoretical argument
is desirable.

As is well known, the concept of the transport cross section was developed originally in
differential dtffusion theory. In the limits of that theory, i.e., when there are many collisions
before absorption or escape, the neutron flux at a given point in space may be written as a
function of direction in the form

f(r,a) = A(r) + B(r) cos a (4.7)

where a is the angle between r and the direction of motion of the neutron. Under these condi-
tions, i.e., when all higher spherical harmonics are absent from the angular distribution, the
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entire influence of scattering on the neutron distribution can be described by the transport cross
section. Indeed, the net number of neutrons elastically scattered into the direction a is

C = -uel f(r,a) + J uel (8) f(r,a’) ~

dn ‘= B(r) ~ fJel (0) (cos a’ - cos a) ~

(4.8)

The first term in the first line represents the neutrons scattered out, the 8econd those scattered
in from direction a‘. In the second line, Eq. 4.7 has been used; in the last, well known relations
of spherical trigonometry. The last integral is the elastic transport cross section. In the further
development of diffusion theory, only Utr occurs; e.g., the diffusion coefficient is

Do = ~S Itr V (4.9)

where ltr is the transport mean free path and v W the neutron velocity.
The distribution (Eq. 4.’7) will be established whenever there are many collisions. In our

problem, then, the use of the transport cross section will be valid within the same limits in
which the normal mode solution is valid, i.e., for shell thickness large compared with a mean
free path. Thus, the transport approximation is exact withtn the limits where the multiple
scattering is most tmportant.

Let us now investigate the opposite limit, that of a thin shell. The number of first tnelastic
collisions is, as in Eq. 2.6

The number of second inelastic collisions is gtven by Eq. 2.7,

(4.11)

which can also be derived from Eq. 4.2. The length of chord y(r, 0) is given by Eq. 2.9. Except
for very small /cos O[, Eq. 2.9 may be written for a thin shell in the form

y(r, O)= ~ ifcose>o

Y(r’e)=w ‘fCos‘<0 (4,12)

This means essentially that the curvature of the shell is neglected.
Let us now expand Uel (0) (cross section for scattering per unit solid tingle) in powers Of

cos e,

ual(0)= ao+alcos O+aacos2 f3+aacos’ 0+... (4,1s)

Inserting this into Eq, 4,11 we see that we can use the approximation of Eq. 4.12 for y, together
with every term in Eq. 4.13 except the first. The first term, on the other hand, has been inte-
grated in Eqs. 2.14 and 2.16. Therefore, we can evaluate Eq. 4.11 in good approximation, and
noting that <r2 —r> = <r - ri> = ~z ~ we get

[
1; = ~2 ainX2 aOL -al + a2 -

E?+ ~%]
(4.14)

n
odd even
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Adding this to Eq. 4.10, we get to order X2

‘~%+~(g-ii&)an]‘4*”)
odd even

where we have used the expreaaion for the total elastic cross section corresponding to Eq. 4.13

(4.16)

even

The elastic transport cross section is

11
z

1
z

1
Cret

‘ao-3a’+3a*-
—an+
n+2 m % (4.17)

n n
odd even

Now our old Eq. 2.18 gives, ii uet ia aubatituted for uel

( 1

)

1
l=l-T=~in X 1-3%X +~uinuet X2(L-1) (4.18)

In other worda, if we use the tranaport cross section, the bracket in the “correct” result (Eq.
4.15) is replaced by Eq. 4.17, multiplied by L -1. Reasonable values of L are between 3 and 4,
corresponding to rl/r2 between 0.55 and 0.85, Eq. 2.16. Choosing L = 4, the bracket in Eq.
4.15 is

3a0 - al +~a, – 0.33a2 + 0.30ad – 0.20a5 (4.19)

whereas the transport theory glvea for this case

3a. - al + a2 – 0.6a2 + 0.6a, – 0.429a5 (4.20)

Thus for L =4, the coefficient of ~ ia correctly* given by tranaport theory. If the angular dis-
tribution ia just a. + al cos 9, we would therefore get the correct result by using the tranaport
cross section theory. With moat meaaured angular diatributiona of elastic scattering, the “cor-
rect” result (Eq. 4.19) ia likely to’be smaller by 10 percent or ao than the tranaport result
(Eq. 4.20). For angular distributiona requiring high order terms (a.) in the cosine expanaion
(Eq. 4.13), the discrepancy between the exact and tranaport theory is lncreaaed.

Thus we aee that even in the limit of very tiin shells, the transport theory is quite a good
approximation, especially if we remember that the bracket in Eq. 4,15 occurs only in a correc-
tion term. Since the transport theory is a good approximation for thin shells and ia exact for
~k ones, it is not surprising that it is very good for intermediate thicknesaea, in accord with
Table 4.1. Even the sign of the error can be underatoock We have eeen that the elaatic trana-
port croaa section, ueed in Eq. 2.18 or 4.18, predicts too high an inelastic scattering for a given
cross section, and hence too low a sphere tranamiasion. This agrees with Table 4.1.

Since Eq. 4.18 predicts slightly too much i.nelaatic scattering, it follows that uet ia sliSh~Y
larger than a true effective elaatic cross section would be. The use of the total elaatic cross
section uel in Eq, 4.18 would greatly aggravate this error; in fact, the factor (1 - coa 0) does
not reduce the croaa section quite emmgh.

* The coefficient of aO ia, of course, alwaya correct.
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In view of the above discussions of inelastic scattering, it is important to note that the
evaluation of experiments with the transport cross section gives a lower limit to the inelastic
scattering cross section and as we have shown, a very close limit. — —

4.4 Small Angle Limit

An interesting special case is that of a very sharp forward peak in the differential cross
section for elastic scattering. l%is is not relevant for our own experiments at energies around
1 to 6 Mev, where there is always considerable elastic scattering through 90° and more, but it
is important at high energies, such as 14 Mev. We shall treat this case also analytically. We
shall assume throughout that the shell is thin compared to its radius and that we have effec-
tively plane geometry. In the beginning, we shall assume further that crt X CC1; then we can
use the approximations of Chapter 2. Later on, we shall relax this condition.

Using Eq. 2.9 for small angles 8, we find (see Eq. 4.12)

‘(r$e)=(r’-r)(1‘+’) (4.21)

If the neutron had proceeded forward, the path length would have been rz -r, so that the in-
crease of path is l/2(r2 - r) 02, as is geometrically obvious.

The sum of first and second inelastic collisions is, to order X2, similar to Eqs. 2.18
and 4.15

(4.22)

where <02> is the average of 02 over all elastic collisions. In the last term, cfel X is the proba-
bility of a first elastic collision, to order X. This is multiplied by the probability of a second
inelastic collision, which is Uk times the average of Eq. 4.21 over r. Equation 4.22 may be
rewritten

( Uxl
Ii + 12= crinX 1 –~+Z. uel <t?2>X

)

Now for small scattering angles

r4r Crel <e%
ue~ = ue~ (9) (1 -cos O)d(o= z

o

so that the total number of inelastically scattered neutrons is

( )UinX +-l- T= Ii+12=crbX l-~
2

TO accuracy X2, this may be written in the form

T = e-ainy

We define an effective thickness Y by

(Y=x l+;cletx
)

The last factor describes the lengthening of the path due to elastic collisions.

(4.29)

(4.24)

(4.25)

(4.26)

(4.27)
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We can now generalize this result to greater thickness of the shell. For this purpose, let
us separate the effects d, elastic and inelastic scattering. All that the elastic scattering does
is to lengthen the path of the neutrons. Let p(z) dz be the probability that the total path through
the shell of a neutron, originating at the sphere center, is between z and z + dz, if there is only
elastic scattering of the correct cross section and angular distribution. In principle, p(z) can
be calculate@ clearly, p(z) = O if z < X and p is normalized so that

~- P(Z)dz = 1 (4.28)

Now consider the inelastic scattering. The probability that a neutron will not be inelasti-
cally scattered if it travels a distance z, is e-uinz. Hence, wttb no approximations, the total
probability of transmission without making inelastic collisions is

T = ~a p(z) e-ui.z dz
o

(4.29)

Now let us make our assumption that the scattering angles are small. Then, tn general,
the path length z will be not much greater than the shell thickness X. Precisely, we assume
that

u~(z-x) <<l (4.30)

for all important values of z. Then we may expand Eq. 4.29 as follows

T = e-%x ~ p(z) e-ui~fz-~ dz

. e-uinx~ p(z) dz [1 - CJh(z - X) + . ...]

=e-’Y~nx[l- U~< Z-X>+...]

= e-~in~

where

y = <z>

neglecting terms of order cr~z(z - X)2 (assumption of Eq. 4.30).
Thus, if Eq. 4,30 is true, we need only find the average length

tering.

(4.31)

(4.32)

of path due to elastic scat-

We thus calculate the average path length of a neutron which does not suffer inelastic col-
lisions, assuming that the neutron starts at the center of the sphere. The distance that an av-
erage neutron travels tn going from r to r + dr is

dY=
dr

(
<a2(r)> + -

=dr l+y . . .<Cos a> )
(4.33)

where a is the angle between neutron direction and radius vector, and c az(r) > is the statistical
average of a2 over all possible neutron paths, taken at position r. As is well known, a2
increases linearly with the distance the neutron has already traveled. Explicitly

<aZ(r)> = ae~ (r - ri) <02>

= 2(r – ri) IJet (4.34)

where <92> is the average over the deflections in one collision, and, on the right hand side, the
distance traveled has been put equal to r – ri. Inserting in Eq. 4.33 and integrating over r, the
total average path length of the neutron becomes
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(Y=X l+~aetX
)

(4.35)

in exact agreement with the thin-shell formula (4.2’7).
Thus, Eqs. 4.26 and 4.27 have been established if only (1) c a? > remains small, and (2)

the condition of Eq. 4.30 is fulfilled. Condition 1, according to Eq. 4.34, means

aetX cc 1 (4.36)

replacing z by its average Y, (Eq. 4.35) means

ain aetX2 <c 1 (4.3’7)

In practice, for 14 Mev neutrons, ah >> uet; hence, if Eq. 4.37 is fulfilled, Eq. 4.S6 will be
true a fortiori. On the other hand, for the same reason it is not necessary that cqnX be small;
in other words, the average number of inelastic scattering may well be larger than 1. In
practice, again, ael = ~in, so aelX may also be larger than one. III fact, the number of elastic
collisions in the shell is totally irrelevant, as long as the deflection in each of them is small
so that Eqs. 4.36 and 4.37 remain true.

We shall now compare the results of the small angle limit (Eqs. 4.25, 4.26, 4.31) with the
transport theory as summarized in Eq. 4.18. Equation 4.25 differs from Eq. 4.18 only by the
absence of the factor L -1. Since L is, in general, equal to 3 or 4, the effect of elastic scat-
tering in the correct formula (Eq. 4.25) is smaller than in the transport formula (Eq. 4.18) by
a numerical factor of 2 or 3. This is understandable because great lengthening of the path oc-
curs only for scattering between say, 60” and 150°, and such large angles are specifically ex-
cluded by condition 1, above.

We see that the error of transport theory is in the same direction as in the general case
discussed in Section 4.3, but much greater. In both cases, transport theory overestimates the
enhancement of the number of inelastically scattered neutrons. by elastic collisions. However,
in the case of very fast neutrons, the whole enhancing effect of elastic scattering is very small,
even if it is overestimated by the use of transport theory. Thus the discrepancy between cor-
rect and transport theory tn this limit is not very important. However, if high accuracy is
desired, the use of Eqs. 4.26 and 4.27 is recommended at 14 Mev, and at intermediate energies
(6 to 10 Mev) the result will lie between the values of Eqs. 4.26 and 4.27 and those of the trans-
port theory used tn the bulk of this paper.
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Chapter 5

DETERMINATION OF ESCAPE PROBABILITIES

6.1 Escape Probability After First Transport Collision (Pi)

The escape probability after the first transport collision, Pi, h defined by Eq. S.8

where fl(r) dr is the first collision distribution in the spherical shell, given by Eq. 3.3, and
P(r) is the escape probability from the shell as a function of radius (Eq. 3.5). The quantity
P(r,8) in Eq. S.5 is defined in Eq. 3.4. The integral, which we will do by numerical methods,
is thus

(5.1)

where all distances are now expressed in traneport mean free paths and the new variable
u = cos 0 is introduced; y(r,~), se in Eq. 2.9, is

y(r,d=-rK +Jr~+rl#-r*-a4 r~+rzpz-r~

where a=2 if F
1 a~z-1- l-—

r2

Isotropic elastic scattering is assumed in Eq. 5.1 because we are now treating only transport
collisions.

To completely epscify Pi it is only necessary to give the values of two parameters since
these will fix rl and rz: (1) the shell thickness in transport mean free paths Utr X, and (2) the
ratio of inside to outside shell radius rt/r2, or K. Then
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K(atr X)
‘i= 1-K

(atr x)
‘2 =1-K

(5.2)

The determination of the proper tranaport cross section to use for a gtven incident neutron
energy is di.scuBsed in Section S.5.

The integration of Eq. 6.1 was done numerically on the CPC (Card Program Calculator)
machines at Los Alamos for a variety of choices of atr X and K. The results are graphed in
Fig. 6.1. Simpson’s rule was used to perform both the # and r integrals. In most of the com-
putations, five equally spaced values of r and 21 values of y varying from 1 to -1 were chosen.
To determine whether Pi could be obtained to sufficient accuracy by calculating P(r) at five
points in the shell and combining these values, P(r) was also calculated for nine equally
epaced values of r and these nine values were combined to form Pi, The Pi values computed
by the two methods were compared for a number of shells and were found to dtffer by 0.3
percent in the woret case. To check whether a sufficient number of intervals was choeen for
the L integration, the number of values of w was increased from 21 to 41 in some typical
cases, with the result that P(r)tl wae at most 0.1 percent clifferent from P(r)tl. Some of the
numerical integrals were performed using both the trapezoidal rule and Simpson’s rule. The
results of the two methods agreed to 0.1 percent. It is thought, however, in view of the smooth
nature of the curves for P(r, O) and P(r), that Simpson’s rule gtves a slightly better approxi-

mation to the correct answer. The small differences mentioned above we not the result of
carrying too few places in the machine computation. In all of the numerical computations eight
places were carried. In view of these uncertainties the values of Pi calculated on the CPC
machines are thought to be uncertain to = 0.4 percent.

To construct each of the curves for a fixed K in Fig. 5.1, five values of ~tr X were chosen
(~trX= 0.2, 0.4, 0.8, 1.2, and 1.6). Smooth curves were drawn through these points and the
origin. For an arbitrary shell, K and atrX usually require an escape probability somewhere
between the computed points. To obtain this escape probability, one reads Pi for each K at
the desired utrX. These values can then be plotted as a function of K and a smooth curve
drawn through the points. Pi at the desired K can then be read from this curve. Pi determined
by interpolation between computed points was within 1 percent of values actually calculated on
the computing machine for several cases.

It can be shown that

(5.s)

For most of the experimental work reported herein, 6a~/uh (the error in inelastic cross
section due to an error in computation of escape probability) is less than 1 percent, although
for some of the measurements taken with the Np23f detector 6qn/u~ is about 2 percent. This
is, however, about ~’ of the statistical counting error in these cases and is thus not very
significant.

In Section 3.2 it is pointed out that P(r) should not depend very much on r in a spherical
shell. Curves of some typical examples of 1- P(r), computed by the above methods, are
given in Fig. 3.2 to illustrate this point. As expected, the magnitude of 1- P(r) changes more ‘
from the inside to the outside radius of the shell for a thick shell than it does for a thin shell.
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Fig. 5.1—Plot of Pi, the escape probability from
collision.
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5.2 Escape Probability After a Second Transport Collision (P2)

The escape probability after a second transport collision, Pz, is computed from Eq. 9.12.
The relative probability [f2(r) dr] of a second elastic colli,4ion between r and r + dr is yet to be
determined. We shall now endeavor to find this probability for a finite size Ar.

Thus we write

(5 .4)

where r, is the inner radius of the subshell in question and rj+l is the outer radius in transport
mean free paths. Thus

Arj = rj+l – rj

G(O,r,rj, rj+l) is the probability of a second collision in the subshell between rj and rj+l, ff a
neutron scatters on its first colllsion at a position r and through an angle O. The numerator in
Eq. 5.4 is then the number of second collision in the spherical subshell Arj, and the denomi-
nator is just the total second collision rate. To minimize computing effort, a four-region dis-
tribution function was decided upon, i.e., Arj = (iz – rl)/4. The geometry is shown in Fig. 5.2.
To describe G(8,r,rj, rj+l ), we define the following quantities

a(r,j ,v) = r~ – r; – r2 + r2p2

b(r,j,v) = rp + {r! – r2 + r2P2 (5.5)

c(~, r) = 2 r? —r2 + r2~2

Of course, v = cos .9, and distancee are expressed in transport mean free paths.

Case A

Case B

GO.w,rj,rj+l ) = eati) _eaQ+U (5.6)

G@, r,rj ,rj+l ) = e au)*-eaQ+1)*(5.7)

G=O (6.8)
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