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BREAKUP OF AN ACCELERATED SHELL OWING TO
RAYLEIGH-TAYLOR INSTABILITY

by
B. R. Suydam

ABSTRACT

We examine a simplified model for the
Rayleigh-Taylor instability of an accelerated
shell and find the most dangerous wavelength
to be about that of the shell thickness. The
shell material is assumed to be an inviscid, in-

!

b))

gfg. compressible fluid. Effects of finite com-
=g pressibility and of surface tension are found to
3 b3 be negligible, but the effects of viscosity are
i=8 _shown to be very large. The need for better

g o' knowledge of viscosity at high pressure is
=0 pointed out.

=

=] -

1. Introduction

In discussing the Rayleigh-Taylor instability of accelerated shells,
it is conventional first to write down the growth rate

v = /2mg/x (1.1)
where g is the acceleration, A is the wavelength of the perturbation, and we have
assumed the density of the material accelerating the shell to be negligible com-
‘pared with that of the shell material. Equation (1.1) is derived under the
assumption that the shell is a perfect inviscid incompressible Tiquid with no
surface tension. Thus as A » o the growth rate v +~ . In spite of this obvious
pathology, it is common to employ Eq. (1.1) together with the assertion: "Really,
the most dangerous wavelength is that equal to the shell thickness A; thus in
Eq. (1.1) we should set

(1.2)

>
4
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With this value of A we can evaluate Eq. (1.1) for breakthrough time." It is
our object to discover whether a physical basis can be found for such lore.

One could argue that Eq. (1.1) is derived for a semi-infinite medium,
j.e. a shell for which A > > A. In Appendix A we present the conventional
Rayleigh-Taylor analysis done for a dense shell between two tenuous semi-infinite
layers. The result is that, when the density of the tenuous media can be neg-
lected, the growth rate and the mode structure are both totally independent of
the thickness of the dense shell being accelerated. Thus finite shell thickness
cannot be envoked to alter Eq. (1.1). Rather, we shall see from a simple
phenomenological model that the nonlinear phase is responsible for singling out
modes described by Eq. (1.2) as being the worst.

2. Simplified Rayleigh-Taylor Breakthrough Model

Rayleigh-Taylor instability has been described in terms of three
phases:

(1) The early phase of small amplitude perturbations that grow
exponentially in time as exp[vt]. For an inviscid incom-
pressible medium v is-given by Eq. (1.1).

(2) An intermediate or transition period, followed by:

(3) The asymptolic "bubble and spike" period. In this phase the
spike grows with constant acceleration equal to g and the
bubble rises at constant velocity proportional to vgi.

We shall simplify first by eliminating phase (2) above. Thus our disturbance grows
during phase (1) as

£=E; eVt v = Emalx (2.1)
where £ is the displacement from equilibrium. According to Appendix A, this

expression holds for a shell of arbitrary thickness. At time t] the acceleration
and velocity

. 2 \)t.I (2m/2) vt]
£, = v Ee = (2ng/A)E_ e .
1 0 (o] . (2.2)
vt vt .
Eo=veg e | = /A% gge |,

are attained.




As we are eliminating the transition phase, we are to identify the spike
acceleration at t] with its asymptolic value g; thus the first of Eqs. (2.2)
gives

vt
£y € 1. A (2w) t] = /A/(2mg) log [Zﬁgo] . (2.3)

Similarly we are to identify the velocity at t] with the bubble rise velocity.
This gives

é] = v = /gA/2m = 0.40 /gx . (2.4)

A11 theories and observations of bubble rise agree on a law of the form v = /gi.
The predicted values of b are rather uncertain; observed values range roughly
from 0.30 to 0.35. Our crude model agrees with this reasonably well. It will,
if anything, be slightly pessimistic, but not at all badly so.

Now the computation is straightforward. Let A represent the shell
thickness. During stage (1), 0<t<t], the "bubble" penetrates a distance A/2m,
by Eq. (2.3). Thus for the second stage there remains A-A/2m to penetrate, and
this at a velocity v given by Eq. (2.4). Thus the duration of the second phase,
ty, is given by

[y /2
tZ—[A—Zn] = (2.5)
The total breakthrough time tb = t] + t2 or
_/E 1 _ I
%h=vg lx+x[2 Tog x - 1 + Tog (A/go)]“ , (2.6)
def
/ A
X = Vom

Assuming all wavelengths to be present in the initial perturbation, the worst one
will ultimately prevail. This is the one for which x = Xy where XM is determined
by
(1/%,)% = 1 + Tog (a/€) + Tog (x,)?
M o M s . (2.7)
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and where go is the amplitude of the initial perturbation. Clearly the worst
wavelength depends on A/go, but not very strongly. A value of A/g0 of order 103
seems reasonable. Setting log (A/go) = 7, Eq. (2.7) can be solved numerically
for (xM)Z, giving

2
(x)
A

0.162 ,
(2.8)

M 1.02 A .

This is in good agreement with the traditional lore, Eq. (1.2). Actually, the
worst wavelength depends on the initial perturbation go’ but when £°<<A this
dependence is quite weak.

What happens, of course, is that during phase (1) the shortest wave-
lengths grow the fastest whereas during the bubble and spike phase the worst wave-
lengths are the longest. These combine, as we have shown, to make A = A the
worst wavelength for the full composite phenomenon.

Having found Xy» We can substitute back into Eq. (2.6) to find the
corresponding breakthrough time, namely

tb = 4.17 V/A/g (worst mode) . (2.9)
In this time the shell will have moved a distance s, given by
s=1g(t)2=8.74 (2.10)
2 b ) > :

provided g is constant over this period. This is a bit less pessimistic than
setting A = A into Eq. (1.1) and writing

vt
A=t e 2 or T =/-21AT— log (A—) . (2.11)

%

Using the same value of go as before, namely A x 10'3, we get Eb = 2.8/A/q and
and s = 3.9 A.
3. Real Fluid Effects

So far we have considered our shell to be a perfect, inviscid,and

incompressible fluid without surface tension. We now shall consider, in order,
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the effects of surface tension, of compressibility, and of viscosity.
If the fluid possesses a surface tension T, the wavelength of maximum
growth rate during the exponential phase is given by

AM = 2n/3T/{gp) (3.1)
now for normal metals T is of order 500 to 1000 in cgs units. Thus taking
T = 103, p=10, g = 10]2 we get AM ~ 10'4 cm. This is so short compared with

the worst nonlinear wavelength, namely A = A, that we can safely neglect surface
tension.
Next we must consider compressibility. Normal sound speed, Co> in
metals is around 0.5 x 106 cm/s. If we simply equate this with Eq. (2.4),
v = 0.4/gA, and take A = 1 mm., we find v = c, at g = 1.56 x 10'3 cm(s)'z.

13

This suggests that at accelerations exceeding 10 °, compressibility effects might

be important. In fact they are not as we shall now show. A reasonably realistic
equation of state for a metal is

p=Sp’-p (3.2)
from which we get for the sound speed Cq

2:.3_B-=l 3.3
c“z5=7 (p+py) - (3.3)

If we denote by Po the density at zero pressure then
and at this pressure sound speed is
2 _
c, = Yo /0, - (3.5)
For metals, y actually varies slowly with the pressure from about 5 at low
pressures to around 3.5 at a megabar or so. From Eq. (3.5) and known values for

y and ¢ we find that Po is about 1/2 to 3/4 Mbar. Now from Eq. (3.3) we
have clearly



c > Aplo . | (3.6)

But, to accelerate a shell of normal density Po and thickness A to an accelera-
tion g a pressure

P = pyAg (3.7)

is required. Thus

¢ > (vo,/0)/% vBg . (3.8)

Comparing this with Eq. (2.4) evaluated for A = A, we see that the bubble rise
velocity is always well subsonic, provided only

YP 1
E;Jl > (3.9)

Now even for vy as small as 2, Eq. (3.9) holds for all reasonable compressions.
Thus we can safely neglect compressibility.

Chandrasekhar discusses the effect of viscosity on the exponential
growth phase of Rayleigh-Taylor instability. He gives(z) for the worst wave-
lTength, AM’ and the associated most rapid growth rate, VM

12.80 (u2/gp?)'/3

A s

M (3.10)

0.4599 (pgz/u)”3 s

M

where u is the viscosity. If we substitute into these formulas normal values of
viscosity for metals, around a centipoise at one bar, we would conclude that
viscosity effects are completely negligible. However Mineev et a1(3) have
measured viscosities at high pressures produced by shock waves and have found u
is about 100 kilo poise at 1 Mbar. If we eliminate g with Eq. (3.7), the

first of Egs. (3.10) becomes -

2, \1/3
Ay = 12.8 P . (3.11)

>
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Setting in A=0.1cm, p =10, p = 1012 dyngs/cmz, u = 105 poise we get

AM = 0.59 cm. Thus with such a viscosity, the exponential phase is very different
from that of the inviscid case and growth times are greatly extended.
For the same numbers as above

vy = 2.13 10° (3.12)

whence, estimating breakthrough time as 7 generations [Eq. (2.11)]

tp =3.3x107°s (3.13)
and the total distance travelled before breakup is

s = 1 (t )2 = 5.4 cm = 54A

7 9L, . s (3.14)
a result very different from Eq. (2.10).
Finally let us consider the bubble and spike phase. The Reynold's

number is defined as

R = avp/u (3.15)

where a is a typical length and v a typical velocity. Setting a = A and the
bubble rise velocity, Eq. (2.4), for v we have

= ﬁé /S, (3.16)

R:.Q_é_
u 2mp

i

upon using Eq. (3.7). Using p = 10, A = 10'], u = 10° and p = 1012 gives

R =1.26. Now the Reynold's number is roughly the ratio of inertial to viscous
forces. Thus these two forces are of about the same magnitude, so viscosity will
very noticeably affect the bubble rise as well as the exponential growth before
the bubble and spike phase.

Unfortunately, viscosities at shock pressures exceeding a megabar
have not been measured. Up to this pressure,viscosity seems still to be rising
with increased pressure, but theory would lead one to expect a turnover at some
finite shock pressure. This should occur when the temperature rise from shock

7



heating overwhelms the effect of greater shock compression. The correlation of
theory with experiment is, however, at present quite unsatisfactory, so what is
really needed is more measurements, especially in the 1 to 100 Mbar range.

We have not made a serious attempt here to access accurately the effects of
viscosity, but we have shown them to be important in the stability problem.
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APPENDIX A
RAYLEIGH-TAYLOR INSTABILITY OF AN INVISCID FLUID PLATE.

The equations of motion of an inviscid, uncompressible fluid are

=0 (A.1)

where 3 is the direction of "gravitation" which, by the principle of equivalence
mocks the acceleration. This has the static solution ﬁo =0and p = po, P = Pgs
where

g, (A.2)

which we perturb by setting

p=p°+6p s p=p°+6p s
(A.3)
U = af/at

Clearly E represents a displacement from the static equilibrium. We suppose E

and its derivatives to be so small that we can neglect nonlinear terms. Then
the first of Eqs. (A.1) integrates to give

8p = - (E-V)p0 (A.4)
and the second equation becomes
- o't = V(op) - §(Z.Vpy) - a.5)

We have already Fourier analyzed in time, writing E(x;t) = E(x)exp[iwt]. As we
have no rule for calculating 6P from E for an incompressible fluid, we eliminate
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it by taking the curl of Eq. (A.5), obtaining the equation of motion for z,
- of curl(pf) = - [V(E.9)1 x § . 4.6)

As only Po enters explicitly, it causes no confusion to drop the zero subscript,
as we do from here on. Now set

S
g = (0,0,-9) ; g = const.

p = p (z alone) (A.7)

E(x.y,2) > E(z) exp {ilkx + k. y)}

and the z-component of Eq. (A.6) becomes

kxg —ky&x =0 (A.8)

which, together with

V.E = (kxgx + kygy) + azgz =0, (A.9)
gives
g = (ik /k%)oE
X X 27z
(A.10)
- 2
£, = (1ky/k )3.E,

Setting these values into the x- and y-components of Eq. (A.6), the two reduce
to the single equation

g_z [pm2 %E—] - k2 [pmz +g %—g] £E=0 (A.11)

where we have written £ in place of gz.

Boundary conditions are that £ be everywhere bounded and that it be
continuous. Thus across any surface that bounds two different materials we must
have

Legl=0 (A.12)
10



where [...] means the jump in (...) across the boundary. One other condition is
needed which we get from Eq. (A.11). In each medium p is constant, but it jumps
across boundaries. Let us replace the jump by a gradual transition zone, say
extending from Zy- %—to z°+-% . Now integrate Eq. (A.11) between these Timits.
We get

z +
(A.13) l:png' - kngg] © 2, 0(e) = 0 (A.13)

Zo"

Nm Njm

whence, allowing € to tend toward zero, we get
2.1 2 N
(A.14) [ pwg -kpggl =0 (A.14)

as our other boundary condition. Inside each medium, p is a constant and
Eq. (A.11) therefore has the general solution

(A.15) £ =RAe < + Be . (A.15)

Now consider a three layered medium. For 2z < - %-we have medium zero
(density po); in this region

A

kA)ekz for z < - 7 - (A.16a)

£ = (A + Be

Next, for - %-<z<v% we have medium 1 (density p]) in which

kz A A

£ = Ae" " + Be K2 for -3 <z <m . (A.16b)

11



Finally for z > %-we have medium 2 (density p2) and in this medium

~-kz

g = (AekA + B)e for 2z >-% . (A.16¢)

We have chosen the constants so that condition (A.12) is satisfied at both
interfaces and so that £+0 as z + + ». It remains to satisfy condition (A.14)
at both interfaces, z = * %u These conditions may be written as

2 kg 2 -k g
[(p,+oq)a” + kg(p,-pp)]Re © + [(py-pq)u” + kg(p,-py)IBe =0
-« 2 k 5
[-(p]-po)w2+ kg(p-p,)1Ae 24 [(pl+po)w2 + kg(py-p,)IBe =0
(A.17)

When %A- is large enough that we may drop the terms in exp[-k %J the two

surfaces decouple and we have the usual dispersion relation. We are primarily
interested in a relatively thin plate and in media 0 and 2,which are very
tenuous, i.e.,p0 and Py << Pp- Thus neglecting Po and Py Eqs. (A.17) have a
nontrivial solution only if

[p2w4 - k292p2] [ekA - e—kA] = 0. (A.18).

As %A is not identically zero, this yields

W =% kg 3 (A.19)

the upper sign gives the unstable modes. When these values of w are substituted
into Eqs. (A.17) we find that they reduce to

12



A=0, = Be—kz (—%-< z < %) for wZ = - kg,
(A.20)
B=0, ¢ = Ae+kz (- %-<z < %) for wz = + kg.
Thus in the case of instability, wz = - kg, exactly as though the medium py were

semi-infinite. Moreover the mode structure within medium 1 (density p=p]) is
also completely independent of the thickness of the layer, A. For the stable
modes, wZ = + kg, we again have a dispersion relationship and a mode structure
independent of the layer thickness A. The unstable modes are the Rayleigh-
Taylor modes on the bottom surface,whereas the stable modes are gravity waves on
the top surface.
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