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CAN MATHEMATICS EXPLAIN NATURAL INTELLIGENCE?*

by

Jan Mycielskl

ABSTRACT

I discuss four algorithms that have one thing in common with the brain:
they learn to predict future events based on past experience. The first is the
classical predictor ~t+~ = Szt – s~t-h i- zt-2h for the values of a quadratic
progression. The second predicts the values of linear functional. The third
predicts the vector outputs of an orthogonal operator. The fourth predicts the
letters or morphemes of a text. The first, second, and fourth are simple enough
so that mechanisms appropriate for the computations that they require could
exist in our brains. I prove estimates of the sum of the absolute squares of errors
for the second and third algorithm.

1. THE POINT OF VIEW. I choose the followingpoint of view: The brain receives
some inputs and tries to predict future inputs. The discrepancy between the predicted input and
the real input causes learning. Thinking is iterated prediction starting with any initial input.
This leads to algorithms or automata of the followingkind:

Yt = fi%, %), mt.+l = A4(mf, zt, yt) ,

where tit is the prediction calculated from the memory state mt and the input Zt and rnt+l is
the next memory state calculated from the above and from the true yt. Our time will be
discrete, t = 0,1,2, . . . but, unlike in automata theory, we do not restrict mt, Zt, and yt to
finite ranges. Our automata are predictive devices if yt = Zt+l or yt = ~(zt+l) for all t, in
which case yt is available when jt+l is to be computed.

We are miles away from understanding how the brain functions. But, perhaps, we are on
the right path (for example, see the explanation below in 6.6).

2. THE REAL BRAIN. I shall not talk about studies of the human brain except for the
followingfew facts and contentions (for more information and references see [8, 12, 22]).

The neurons fire along their azons (output fibers) and send their signals to dendrites (input
fibers), cell bodies, and axons of other neurons. The connections between different neurons are
called syna.psts. The individual shots of a neuron are brief signals of the same magnitude (all-
or-nothing rule). The frequency of those signals multiplied by the fraction of each of them pass-
ing through a synapse is believed to be the only information that a neuron transmits to its
addressee. For a given neuron these frequencies may vary from a few to more than a thousand
per second. This frequency depends on the messages received by the dendrites and the cell body,
whereas the fractions of signals transmitted depends also on the messages”received by the axon;
different branches of the a_xonmay receive messages from different neurons.

‘This is the content ofsome lectures that I gave at Loo Alamos in August 1984.
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The firing of certain neurons into the dendrites or the cell bodies of a neuron N diminishes
the rate of firing of N. Others excite their addressees. There are two types of neurons, the exci-
tatory and inhibitory ones. As mentioned above, some inhibitory neurons fire into the branches
of some axons diminishing the magnitude of individual shots delivered by those branches.

It is thought that the frequency of firing of a neuron N is a linear function (with a time
lag) whose arguments are the sizes of individual shots times their frequencies,which are delivered
to the dendrites and the body of N. The coefficientsand constant terms of these functions can
be positive or negative corresponding to excitatory or inhibitory synapses. Perhaps the input
vectors are also normalized to some extent, so that the output frequencies remain within some
fixed intervals. The absolute values of the coefficientsmay be determined by the sizes and other
properties of the synapses. It is conjectured that these coefficientschange in time and that the
matrix of these coefficientsconstitutes the memory.

The tissues of the brain are repetitive in a sense. For example, the cerebral cortex is a
large organ that has to be packed in the skull in a folded way. But the fibers of most neurons in
the cortex are either perpendicular to the cortical layers or parallel to them. The dendrites of
many neurons in the cortex of the cerebellum are organized in planes like the veins of a leaf, and
these are stacked parallel to each other, whereas fibers of other types of neurons run through
these stacks in the direction perpendicular to the leaves.

Other parts of the brain also display some regularities.

3. AN OPTIMISTIC REMARK. In principle we should be able to understand the
mechanism of the brain. Unlike the fundamental problems of cosmology or of the structure of
matter, where one explores a reality that appears to be infinite, here one has to explain only an
engineering marvel created in finite time by natural selection. The regularities mentioned above
suggest that there is only a moderate number of basic “ideas” that are repeated millionsof times
in the brain. If we understood them the problem would be solved, but it is still difficult to
predict the complexity of a satisfactory solution.

Perhaps the point of view expressed in $1 and more mathematical imagination may yield
conjectures amenable to experiments of physiologists and to computer simulation. Several
authors share my optimism that some kind of mathematical models of the brain will prove
important, see, for example, [7, 11, 13, 15, 17]. But we are not yet able to judge how important
are the models presented in this report.

4. PREDICTORS THAT DO NOT LEARN. A well-developed branch of applied
mathematics, “time series analysis,“ is essentially a study of predictors with a fixed a!gorithm.

“Let me recall the main idea.

If ~(z) is a polynomial of degree less than n, then

A~j(z) = O , (4-1)

where, for any function g, A*g(z) = g(z) - g(z - h), and A~+l = AhA#. Now,

0
A~g(z) = S (-l)k ~ g(z - kh). Hence (4-1) suggests the following predictor. Given

k=o
g(z), g(z - h), “““, g(z - (n - l)h), we predict g(z + h) by the formula
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m-l

[1
j(~ + h) = ~ (-1)~ ~ ; ~ 9(Z - ~h) “

k=o

This is exact, that is ~(z + h) = g(z + h), if g is a polynomialof degree less than n.

It is possible that a mechanism for the computation of some simple c~es of this formula,
such as

j(Z + h) = 3g(z) - 3g(z - h) + g(z - 2h) ,

which is exact for all quadratic or linear polynomials, exists in the brain.

5. LINEAR PREDICTORS THAT LEARN. I present here an algorithm A, which is
folklore, but I have not been able to locate it (nor its main property Theorem 5.1) in the litera-
ture.

We assume that the input at time t is a nonzero vector Zt E H, where H is a real (or com-
plex) Hilbert space (finite dimensional in all applications that I know). The desired responses are
real (or complex) scalars yt, where t = 0,1, . . . . The states of the memory of the predicting
algorithm A are vectors mt c H. Upon receiving Zt, algorithm A predicts Ut according to the
formula

it = <mt, Zt> (5-1)

(a conjugate linear functional). The error of this prediction is defined by the formula

w - ii
et= ‘~ (5-2)

(a relative error). We assume that algorithm A learns et immediately after having predicted jt
and then updates its memory according to the formula

[nmt, if leJ < e ,
mt+l =

mt + et 1- fi f$~ ifle~ > e .
(s3)

Then m. is chosen arbitrarily in H, and e is a nonnegative constant called the threshold of
tolerated errors.

.

The formula given in (5-3)can be explained in the followingway:
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rn,+l = (the unique vector m such that l~t - <m, z,> I/llztll < (3 (5-3’)

and Ilrn – mt II is minimal) .

(If we wanted the linear predictor <zt, nat> instead of its conjugate, wewould only haveto
substitute ~tforet in(5-3)or <zt,m> for <m,zt> in (5-3’))

The algorithm A is motivated by the followingTheorem 5.1.

But we need first a notation:

Iv,- <m, Zt> I
E(m) = ~:yf, .

— , , .. Zt

Thus E(m) is a measure of the predictive power of m.

5.1. Theorem. For every m E H we have

(i). ZJE(?ra) < f3, then

F ( Ic,I- e)’ < k -m. l’ .
[.>e

(ii). IfE(m) <e, then

(5-4)

(5-5)

Urn- mJ12

?
( Ietl- e) < ~(e - E(m)) -

k >e

5.2. Problem. Let I?. = inf E(m). In all applications H is finite dimensional, and in
mEH

this case there exists an m such that E(m) = I?o. But, for infinite dimensional H, the follow-
ing question arises: does e = E. imply

We know only that e = E. does not imply (5-5). In fact, for
=0, e = (), zIJ,z~, . . . an orthonormal sequence, and ~: = Iflog(t + 2), we have

;:= O, but ~ ktla = co for every real number CL

[1p+qs.3. Example. We set H = R p , where R is the real line, and

2, = (z::“ “ “2$: k,+ “ “ “ +kp < q) .



Then rnt is the vector of coefficientsof a real polynomial

[1p+qThis is practical only if the dimension p is not too large. ‘

5.4. Example. We set H = C2N+1,where C is the complex plane, and

% = (&N,&N+l,.. .,1,... ,f~) ,

where ~t ● C and I(tl = 1 for t = 0,1, . . . . Then rrat is the vector of coefficientsof the tri-
geometric polynomial

In this e am >Ie the formula (5-3) is easier to compute than in Example 5.3 since here
Ilztll= *1 for all t.)

5.5. A generalization of the algorithm A. The above examples suggest a way of cir-
cumventing the assumption (made before (5-2)) that Zt # O for all t and extending the applica-
bility of algorithm A. Namely, we can always replace H by H @ C (or H @ 1?) and apply the
map z x (z,l ), which omits (0,0). We may also use the unit sphere in H @ C, in lieu of the
hyperplane H X {l}, if we apply the stereographic projection

(42, 4- 112112):
Zt+ ,, ,,-

4 + 1!2114 ‘

of course this gives applications different from those given
preparatory map of the space of data into H may
f l.+(~N,~N+l , . . . ,(N) encountered in Example 5.4.

by the map z t+ (z,l). In general a
be needed, for example, the map

5.6. A hypothetical explanation of the cerebral cortex by means of the algorithm
A. The axons bringing information into the cerebral cortex (the afferent axons) run parallel and
are interspersed with the z~ons exporting the information from it (the eflerent ~ons). Hence we
can conjecture that the two messages are compared, and their difference causes learning. Of
course the etTerent signals (frequencies) depend upon the frequencies of a neighborhood of
afferent zmonsof several time steps. The time steps would be measured by the a rhythm of the
brain. When the brain thinks rather than watches, the efferent signals could be copied by the
afferent neurons. The computation of the efferent frequencies and the modifications of the
memory would be similar to those of the algorithm A.

5.7. On the range of applicability of the algorithm A. Even in the case when
E(m) = m for all m E H, algorithm A may still be useful, for example, if Vt = < ret’, zt >,
where mt’ drifts slowlyenough in H.
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6.8. The least squares algorlthm. As it is pointed out in [21],from the point of view
that is adopted here, the least squares algorithm is not better than algorithm A. In fact, if

I d = Ilrn - rn~l + E(m), and so no estimatesj. = <~o, Zo> and Z. = rn – rno, then e
sharper than those of Theorem 5.1 are possible with the above formula for ~o. Moreover, the
computations for least squares are much more expensive than for the algorithm A.

Proof of Theorem 5.1. We put Zto = Zt /llz,ll, S, =Ilrn - mJ12,at = 1- etletl,
and Ut = (yt – <m, Zt>) / ]Iztll. Then, by (5-4),we have

IuJ < E(m) , (5-6)

and, by (5-1) and (5-2),

<m – rn~,z~”> = q – u~ .

Hence, if Ietl > e,

st+l = Il(rn - rnt) - ctatzto 112 (by (5-3))

I 12= et – crtet<zto, rn – m:> – at;t <m – mt, zto> + u; et

= 8t - t7tCt(; – iit) – t7t;(Ct – Ut) + @ kt12 (by (5-7))

= St – crt(2 – at) let12+ 2atRe(ettit)

~.9t - ~t(2 - ~~) lct12+ 20&ttE(m) (by (5-6))

= 8t - L7Jetl((2- at) Ietl - 21?(m)) .

Therefore,

4+1 < 80 – 2 akleJ(2 - C7k)Iekl- 2E(m)) .
led> e, Oskst

Of course, St+l ~ Ofor all t; hence,

F C7Jetl((2 – C7t)let I – 213(m)) g 80 ,

1. se

which is equivalent to

F( IcJ- e)(IcJ+e- 2E(7T3))< IIm- mJ12.
[e se

(s7)

Both parts of Theorem 5.1 followimmediately from this inequality.
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6. THE PREDICTION OF VECTORS IN THE UNIT SPHERE. The theorem
presented in this section was announced in [20].

Notice (compare also 5.6) that the algorithms of S4 and S5 can be used for predicting vec-
tors in R’ or C“. Namely, one can apply those algorithms to each coordinate separately. In
this section we introduce a more global procedure A*, although its interest at present is rather
theoretical.

The input vectors Zt and the vectors to be predicted yt are on the unit sphere S*-I in
R“, t=o,l, . . . . The memory states of A* are rotations Alt of S*-l; that is, Aft E SOn. The
algorithm A * predicts according to the formula

jt = iwtzt . (&1)

(All vectors are treated as column vectors.) The error pt of the prediction at time t is defined to
be the angle between it and yt (understood to be in the interval [0, rr]);that is,

0: = = cos <j:, y:> . (6-2)

The algorithm A* updates its memory states as follows:

M. = 1 = the unit matrix ,

M ,+1 = R,Mt , (&3)

where, in the case it # –yt, Rt is the minimal rotation such that

that is, the rotation that does not move vectors orthogonal to both jt and XIt,and, if ~t = –y:,
then Rt = I.

[Of course Rt can be effectivelycomputed in terms of tit and yt. Namely, treating it and
yt as column vectors, if ~t # –yt,

where the superscript T denotes transposition and, for any U,VE Sri-l,u # AU,

Uv= (u - <u,v>u)/lltt - <U,u>u II ,

(&4)

and if u = u, then UW= O.]
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The algorithm A* is motivated by the followingTheorem 6.1.

We assume that there exists a rotation N (unknown to A’) without the eigenvalue–1 such
that

W = IVzt fort = 0,1, . . . . (&5)

6.1. Theorem. Under the aboveamumption~ & # –V: for all t, and

Ep=o p: <Co . (&6)

6.2. Example. The algorithm A* does not yield ~~p~ <co for any a <2. In fact, let
N be a rotation of R3 with rotation angle 7r/2. Then, for every sequenceof positive reals p: such
that Eomp; < x14, there exists a sequence of points Zo, Zl, . . . on S2 such that, assuming
(5-5), A* yields precisely the errors pt. Of course, if Pt = c/(~~1 log (t + 2)) with small
enough c, then the above condition is satisfied, but X p~ = 00 for all a <2.

6.3. Problem. The assumptions (&3) and (6-5) correspond to the case of Theorem 5.1 in
which f3 = E(m) = O. Can one refine Theorem 6.1 in the style of Theorem 5.1?

Proof of Theorem 6.1. We need some notations and a lemma. For any M E SOn we
denote by *M the maximum angle P in the interval IO,rr]such that C’p is an eigenvalue of M.
In other words

Cos(*M) = min <Mz, z>, and sin( *M) ~ O .
zes~

In particular, for ~t # -yt, by the definition of Rt, ~R: = Pt.

6.4. Observation. If Q is a two-dimensional linear subspace of R“ and y C R“, then
there ezistg a q. ~ Q, g. # O, which is orthogonalto U.

Proof. If some q E Q is not orthogonal to y, then <q, y> and <–q, y> are of oppo-
site signs. Hence, by continuity, there exists a g. E Q with q. # Oand <go, v > = 0.

6.5. Lemma. Let R, B E SOn, y E Sri-l, and R be the minimal rotation auch that
RBy = y, then

Proof. If BV = y, then RJ3 = B; if By = -y, then ~(B) = X. In both cases the
lemma is obvious, so let us assume that BV # u and fly # -y. We have ~(R13) = ~(BR)
and, by the supposition, BR(Bv) = By. By the normal form theorem there exists a plane Q
invariant under the rotation BR such that
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+(BR) = arc cos <q, 13Rq >

for every q E QflSn-l. Of course, Q is orthogonal to B~. By 6.4 we can choose
q. c Qns”-l such that q. is also orthogonal to y. Then, since R is minimal, fio = qo. So
we have ~(RB) = ~(BR) = arc cos < go, Bllqo > = arc cos < qo, Bgo > ~ xl?.

Querry. Suppose Z, v E S“-l, and R E SOn are such that Rz = y and

VB e SO, [By = Z ~ ~(RB) ~ ~B] .

Must R be minimal? (This question was raised by H. J. Keisler.*)

Returning to the proof of Theorem 6.1, we will study the sequence l?t = lkft~l. By (&3)
and (6-5) we have B. = IV_l,Bt+l = RtBt, and Rtl?tyt = vt- Thus ~0 does not h-e the

eigenvalue –1 and, by Lemma 6.5, ~llt ~ ~1’V= n – t for some t >0 and all t. Hence, by
(6-1) and (&5), it = Btyt # -yt and the first part of Theorem 6.1 is proved.

For every t we choose coordinates in R’ in such a way that

W =

It followsthat

1

a

a

.

.

0

and BtVt =

C09pi

sin pi

o

.

.

.

0

.

where la~ S 1, and

●H. J. Keialer, University of Wisconsin, Madiuon,1985.

9



8 \
10 0 . . . 0

0 at az~cos pt – a13sin Ot, “ “ “ , a2~co9 pt – alnsin pt

Bt+l = RtBt = O 032 ass . . . OS* .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O am2 an3 . . . ann J

Hence

~r(Bt+l) - ~r(~t) =(1 + at)(l - cospt) ,

and

Notice that at # -1
~B,+l <n.

tr(Bt+l) - tr(llo) = fi (1 +
k=o

since otherwise 13:+1 would

ak)(l – cospk) . (&7)

have the eigenvalue –1, contrary to

Since we have also ~Bt ~ rr- c for all t and since at is a continuous function of Bt and
Vt, by a simple compactness argument, there exists a 6>0 such that at > –1 + 6 for aIl t.
Hence, by (6-7),

n – tr(N’_l) ~ 6~ (1 – cospt) .
t=o

Since 2m-2p~~ 1- cospt, we get (6-6).

7. LEARNING TO PREDICT SEQUENCES OF SYMBOLS. I will describe here
an algorithm A-, which was inspired by the work of D. R. Morrison [19],and an idea for creat-
ing alphabets that is due to A. Ehrenfeucht [presented here with his kind permission]. Recently
a number of papers studying algorithms related to Morrisons’and mine were written [1, 2, 3, 4,
5, 6, 9, 10, 16, 18, 23, 24].

Reflecting upon the functioning of intelligence (rote learning) notice that: One memorizes
certain sequences of events. Then, when faced with a sequence that is a proper initial segment of
one that has been memorized, one predicts the future. Observe the speed with which prediction
occurs, seemingly unobstructed by the size of the set of memorized sequences.

I propose to formalize this as follows. Let X be a finite ordered alphabet, and
s ~,m = (ao, al, . . .), an infinite sequence of letters from 2. We denote by

Sl,k = (al, al+l, . . . j ai+k-1)

segments of So,m. The segment obtained by omitting the first term of a segment S is denoted
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S’. A natural way to predict at on the basis of So,t is the following. We find the longest seg-
ment Si,t-i (O < i ~ t) which occurs more than once in So,t. We find also the largest j < i
such that Sj,t-i = Si,t-i and we put

that is, tit is the successor of Sj,t-i in So,t. Since the search for these objects may be too long
(when t is very large), we define an algorithm A- which also constructs a memory Mt that facil-
itates this search. (But we shall not obey the requirement made above that J“is the largest, since
this would induce an uninteresting complication.)

The state &ft is the set of segments Si,k such that i + k ~ t, S;,k occurs only once as a
segment of S. t and, for each i, k is the least number for which this holds. There is one excep-
tion, however:’ the segment Si,k with the largest i satisfying the above conditions is replaced by
the segment Si,t-i. We call it the laut uegment (it is a final segment of So,t). Moreover, we
assume that Alt is ordered lexicographicallyand that the last segment is marked, to be immedi-
ately accessible.

Given some segment S that occurs in SoIt, &ft allows one to find the continuations of all
occurrences of S in So,:. One finds all S,,& of Mt such that S is an initial segment of silk or

Si,k is an initial segment of S. Then one locates all Sj,f of kft such that s~,k are their initial
segments, etc. So if S appears only once in SoIt, one gets its continuation in So,t. If S appears
more times, one gets continuations of all those occurrences.

The algorithm A- computes iit in the followingway. It looks at the last segment S and
finds segments Sl,k in Mt such that S“ is initial in S: k. By the definition of S at least one
such Sl,k exists, and all of them must be longer than S}’. Then iit is the tirst letter of E that
followsthe initial part S“ of such Si,k’s.

Using the above information it is easy (but tedious) to define the remaining part of the
algorithm A-, namely the method for constructing ~~t~l from Mt and at. We shall not
describe this part, but notice that, like the expected length of the computation of tit, the
expected length of the computation of &ft+l will be a moderate function of log t. Thus we
observe that algorithm .4- is not easily obstructed by long texts.

7.I. Observation. (i). Z/ the sequence So,m is euentuaflyperiodic, then, for alf large
enought, fit = at.

(ii). 1/ tit = at th~ ~t+l di~~ers from Mt only by the addition of at at the end Of the
last segment.

Proof. (i). If So,w is eventually periodic, then every segment Sl,k with large enough i
equals a segment SJ,k which overlaps with the first occurrence of the period. This yields (i).

(ii). If S is the last segment of A4t, then S“ occurs more than once in Soot, and so does
S“at in So,t+l. Hence Sat is the last segment of kft+l.



It appears that A - is a good prediction algorithm for the letters (punctuation marks and
blank included) of an ordinary long enough English text. Also one can “think” by means of A-.
Namely,havingaccumulated a sizeable Mt, one produces ht, 6:+1, . . . . This can make an
interesting pseudotext, a kind of echo to So:. (We could v3ry the choices of the letters dt by
dropping the requirement tht we choose always the first letter in X that was available. We could
use instead some probability distribution over X or some other idea. This will give more ori-
ginality to the “story” dt, iit+l, . . .).

One feature of common texts may appear excessively arbitrary: the usual alphabet. A.
Ehrenfeucht proposes the following change. One finds the frequency of pairs of consecutive
letters in a long English text. Then one marks the places between the letters with the frequen-
cies of the pair at that place. In this way one gets a sequence of real numbers. One divides the
text in all those places where that sequence has its local maxima. Experiments show that the
mean of the lengths of the resulting parts is about four letters. (Some statistical investigations
are still going on.)

We make a list of all those parts. Their frequenciesdecrease rather fast so that those parts
can be taken as letters of a “semifinite” alphabet. The algorithm A- applied to this kind of
spelling of ordinary English texts should be more interesting (although experiments have to begin
with a preparation of that alphabet). Preliminary experiments of A. Ehrenfeucht show that
those letters are similar to the morphemes of languages.

8. ACKNOWLEDGMENT. I am indebted to the late Stan Ulam for many conversa-
tions on the problems discussed here.
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