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Z. 1Nl INNAL DIVALIY. 1 SD3ll DOU T3lK aDOUL Studles o) Lle DUMman Drain excepl Ior tne
following few facts and contentions (for more information and references see [8, 12, 22}).

The neurons fire along their azons (output fibers) and send their signals to dendrites (input
fibers), cell bodies, and axons of other neurons. The connections between different neurons are
called synapses. The individual shots of a neuron are brief signals of the same magnitude (all-
or-nothing rule). The frequency of those signals multiplied by the fraction of each of them pass-
ing through a synapse is believed to be the only information that a neuron transmits to its
addressce. For a given neuron these frequencies may vary from a few to more than a thousand
per second. This frequency depends on the messages received by the dendrites and the cell body,
whereas the fractions of signals transmitted depends also on the messages received by the axon;
different branches of the axon may receive messages from different neurons.

®This is the content of some lectures that [ gave at Los Alamos in August 1084,



The firing of certain neurons into the dendrites or the cell bodies of a neuron /N diminishes
the rate of firing of N. Others excite their addressees. There are two types of neurons, the exci-
tatory and inhibitory ones. As mentioned above, some inhibitory neurons fire into the branches
of some axons diminishing the magnitude of individual shots delivered by those branches.

It is thought that the frequency of firing of a neuron N is a linear function (with a time
lag) whose arguments are the sizes of individual shots times their frequencies, which are delivered
to the dendrites and the body of N. The coefficients and constant terms of these functions can
be positive or negative corresponding to excitatory or inhibitory synapses. Perhaps the input
vectors are also normalized to some extent, so that the output frequencies remain within some
fixed intervals. The absolute values of the coefficients may be determined by the sizes and other
properties of the synapses. It is conjectured that these coefficients change in time and that the
matrix of these coefficients constitutes the memory.

The tissues of the brain are repetitive in a sense. For example, the cerebral cortex is a
large organ that has to be packed in the skull in a folded way. But the fibers of most neurons in
the cortex are either perpendicular to the cortical layers or parallel to them. The dendrites of
many neurons in the cortex of the cerebellum are organized in planes like the veins of a leaf, and
these are stacked parallel to each other, whereas fibers of other types of neurons run through
these stacks in the direction perpendicular to the leaves.

Other parts of the brain also display some regularities.

3. AN OPTIMISTIC REMARK. In principle we should be able to understand the
mechanism of the brain. Unlike the fundamental problems of cosmology or of the structure of
matter, where one explores a reality that appears to be infinite, here one has to explain only an
engineering marvel created in finite time by natural selection. The regularities mentioned above
suggest that there is only a moderate number of basic “ideas” that are repeated millions of times
in the brain. If we understood them the problem would be solved, but it is still difficult to
predict the complexity of a satisfactory solution.

Perhaps the point of view expressed in §1 and more mathematical imagination may yield
conjectures amenable to experiments of physiologists and to computer simulation. Several
authors share my optimism that some kind of mathematical models of the brain will prove
important, see, for example, [7, 11, 13, 15, 17]. But we are not yet able to judge how important
are the models presented in this report.

4. PREDICTORS THAT DO NOT LEARN. A well-developed branch of applied
mathematics, ‘‘time series analysis,”” is essentially a study of predictors with a fixed algorithm.
"Let me recall the main idea.

If f(z) is a polynomial of degree less than n, then
ARf(z)=0 , (4-1)

where, for any function g, A.g(z)=g(z)- g(z - h), and Al = A,A}. Now,
n n

Alg(z) = Y (1) klolz - kh). Hence (4-1) suggests the following predictor. Given

g(z), g(z - h=), “++, g(z - (n - 1)h), we predict g(z + h) by the formula




iz + h) = F (-1 [k N I]g(z - kh) .
=0

This is exact, that is §(z + h) = g(z + h), if g is a polynomial of degree less than n.

It is possible that a mechanism for the computation of some simple cases of this formula,
such as

g(z + h) = 3g(z) - 3g(z - k) + g(z - 2h) ,
which is exact for all quadratic or linear polynomials, exists in the brain.

5. LINEAR PREDICTORS THAT LEARN. I present here an algorithm A, which is
folklore, but I have not been able to locate it (nor its main property Theorem 5.1) in the litera-
ture.

We assume that the input at time ¢ is a nonzero vector z, € H, where H is a real (or com-
plex) Hilbert space (finite dimensional in all applications that I know). The desired responses are
real (or complex) scalars y,, where t = 0,1, . ... The states of the memory of the predicting
algorithm A are vectors m; € H. Upon receiving z,, algorithm A predicts y, according to the
formula

¥, = <my, z,> (5-1)

(a conjugate linear functional). The error of this prediction is defined by the formula

. Ve - !7: (5_2)
e = —"—"_z‘

(a relative error). We assume that algorithm A learns ¢, immediately after having predicted g,
and then updates its memory according to the formula

my, ifle) <6

=l .
m¢+c,[ _ET]H;JT' iflel >0 .

My = (5-3)

Then m, is chosen arbitrarily in H, and O is a nonnegative constant called the threshold of
tolerated errors.

The formula given in (5-3) can be explained in the following way:



m, ., = (the unique vector m such that ly, - <m, z,> l/"z," <6 (5-3')

and [lm - m, Il is minimal) .

(If we wanted the linear predictor <z,, m,> instead of its conjugate, we would only have to
substitute ¢, for ¢, in (5-3) or <z, m> for <m, z,> in (5-3").)

The algorithm A is motivated by the following Theorem 5.1.

But we need first a notation:

ly, - <m, z,>1

A= Rl &4

Thus E(m) is a measure of the predictive power of m.
5.1. Theorem. For every m € H we have

(i). 1f E(m) < O, then

leE (le - )2 <llm - my II? . (5:5)

(ii). If E(m) < O, then
lim - mdl®
ol =0 S 56 T Hmy 2(9 E(m))

5.2. Problem. Let E, = inf E(m) In all applications H is finite dimensional, and in
meH

this case there exists an m such that E{(m) = E,. But, for infinite dimensional H, the follow-
ing question arises: does © = E, imply

lim sup |c¢| <6e?
t—oo

We know only that © =FE;,; does mnot imply (55). In fact, for
my=0,0=0, 25,2, ... an orthonormal sequence, and y, = l/log{t +2), we have
Ey=0,but ), lc,l = 0o for every real number a.

[
5.3. Example. Weset H = R P , where R is the real line, and

k k
gy =(zf 2l byt +k, < q) .



Then m, is the vector of coefficients of a real polynomial

X k, k,
ge = Ymy, . kT T

pt+q .
This is practical only if the dimension [ P ] is not too large.

5.4. Example. We set H = C?N*! where C is the complex plane, and
¢ =(€t_N: ‘—N+l, s 111 LR ,ff\l) ’

where §, € C and |€,| =1fort =0,1,.... Then m, is the vector of coefficients of the tri-
geometric polynomial

A k
Yy = Eﬁv my & .

ﬁln this example the formula (5-3) is easier to compute than in Example 5.3 since here
lzll = V2N+1 for all t.)

5.5. A generalization of the algorithm A. The above examples suggest a way of cir-
cumventing the assumption (made before (5-2)) that z, % O for all ¢ and extending the applica-
bility of algorithm A. Namely, we can always replace H by H @ C (or H @ R) and apply the
map z + (z,1), which omits (0,0). We may also use the unit sphere in H @ C, in lieu of the
hyperplane H X {1}, if we apply the stereographic projection

!421 4 - "2"2! .

z :
4 + [l=lI?

of course this gives applications different from those given by the map z + (z,1). In general a
preparatory map of the space of data into H may be needed, for example, the map
(NN V) encountered in Example 5.4.

5.6. A hypothetical explanation of the cerebral cortex by means of the algorithm
A. The axons bringing information into the cerebral cortex (the afferent axons) run parallel and
are interspersed with the axons exporting the information from it (the efferent axons). Hence we
can conjecture that the two messages are compared, and their difference causes learning. Of
course the efferent signals (frequencies) depend upon the frequencies of a neighborhood of
afferent axons of several time steps. The time steps would be measured by the a rhythm of the
brain. When the brain thinks rather than watches, the eflerent signals could be copied by the
afferent neurons. The computation of the efferent frequencies and the modifications of the
memory would be similar to those of the algorithm A.

5.7. On the range of applicabllity of the algorithm A. Even in the case when
E(m) = oo for all m € H, algorithm A may still be useful, for example, if y, = < m,‘, z,>,
where m,‘ drifts slowly enough in H.




5.8. The least squares algorithm. As it is pointed out in [21], from the point of view
that is adopted here, the least squares algorithm is not better than algorithm A. In fact, if
o = <myg, 2,> and z, = m — my, then leg] = llm - myll £ E(m), and so no estimates
sharper than those of Theorem 5.1 are possible with the above formula for §,. Moreover, the
computations for least squares are much more expensive than for the algorithm A.

Proof of Theorem 5.1. We put z,° =z, /"z,", 8 = [lrm - m,"2, o,=1-96 /|c,l,
and u, = (y, - <m, z,>)/llzl. Then, by (5-4), we have

lul < E(m) , (5-6)
and, by (5-1) and (5-2),
<m-my,z2,°>=¢-u, . (57)
Hence, if le,] > ©,

St+1 = "(m - my) - ¢,0,2,° I (by (5-3))
= 8, - 0,6, <2,°, m — My > - o6, <m — my, 2,°> + 07 l¢,|?
= 8, - 01ey(, - W) - oyeyleg - w) + of lef?  (by (5-7))
= 8, - 0,(2 - 0,) leJ* + 20,Re(e, ;)
<8 -0(2-0y) l‘zP + 2":":'E(”') (by (5-6))
= 8, - olel((2 - ) led - 2E(m)) .

Therefore,

841 < 8- Y arded((2 - o) ledd - 2E(m)) .
leJ>©, 0<k<t

Of course, 8;,, > 0 for all ¢; hence,

| FG 0’:":' (2 - oy) l‘c | - 2E(m)) < s, ,

which is equivalent to

F (le - 6)le + © - 2E(m)) < llm - mJl? .
[e >0

Both parts of Theorem 5.1 follow immediately from this inequality.



6. THE PREDICTION OF VECTORS IN THE UNIT SPHERE. The theorem

presented in this section was announced in [20].

Notice (compare also 5.8) that the algorithms of §4 and §5 can be used for predicting vec-
tors in R® or C"*. Namely, one can apply those algorithms to each coordinate separately. In
this section we introduce a more global procedure A*, although its interest at present is rather
theoretical.

The input vectors z, and the vectors to be predicted y, are on the unit sphere S* 1 in
R"™, t=0,1, . ... The memory states of A* are rotations M, of S™ 1. that is, M, € SO,. The
algorithm A * predicts according to the formula

J. = Mz, . (6-1)

(Al vectors are treated as column vectors.) The error p, of the prediction at time ¢ is defined to
be the angle between g, and y; (understood to be in the interval [0, n]); that is,

p, = arc cos <§,, ¥,> . (6-2)
The algorithm A* updates its memory states as follows:

M, = I = the unit matrix |,

M., = RM, , (6-3)
where, in the case §§, 7% -y,, R, is the minimal rotation such that
Ry, =y, ;

that is, the rotation that does not move vectors orthogonal to both §, and y,, and, if §, = ~y,,
then R‘ = I.

Of course R, can be effectively computed in terms of §, and y,. Namely, treating §, and
¢ t t ¢
y, as column vectors, if §, 7% -y,

. e .Y Yoy 9
Ry=1+ (v - 97 - (' + e N )T (6-4)
where the superscript T denotes transposition and, for any u,v € S""l, u # v,
u’ = (u - <u,v>v) Ny - <u,o>vll

and if ¥ = v, then u” = 0]



The algorithm A* is motivated by the following Theorem 6.1.

We assume that there exists a rotation N (unknown to A*) without the eigenvalue -1 such
that

y‘=NZ‘ fort=0,l,... . (6.5)

6.1. Theorem. Under the above assumptions §, 75 -y, forall t, and
ER 0 < oo . (6-6)

6.2. Example. The algorithm A* does not yield £°p < 0o for any & < 2. In fact, let
N be a rotation of R® with rotation angle #/2. Then, for every sequence of positive reals p, such
that X§° pf < m/4, there exists a sequence of points zy, Z,, ... on S? such that, assuming
(5-5), A* yields precisely the errors p,. Of course, if p, = c/(Vt + 1 log (¢ + 2)) with small
enough c, then the above condition is satisfied, but £ pf = oo for all & < 2.

6.3. Problem. The assumptions (6-3) and (6-5) correspond to the case of Theorem 5.1 in
which © = E(m) = 0. Can one refine Theorem 6.1 in the style of Theorem 5.1?

Proof of Theorem 68.1. We need some notations and a lemma. For any M € SO, we

denote by M the maximum angle ¢ in the interval [0,7] such that ¢'? is an eigenvalue of M.
In other words

cos(¥M) = min <Mz, 2>, and sin({M) >0 .
zes™

In particular, for §, 7% —y,, by the definition of R,, ¥R, = p,.

6.4. Observation. If Q is a two-dimensional linear subspace of R" and y € R", then
there ezists a qy € Q, qo 7 0, which is orthogonal to y.

Proof. If some g € @ is not orthogonal to y, then <g, y> and <-q, y> are of oppo-
site signs. Hence, by continuity, there exists a g € @ with g5 7 0 and <g,, y> = 0.

6.5. Lemma. Let R, B€E€ SO,,y € S™ ! and R be the minimal rotation such that
RBy =y, then

¥(RB) < &B .

Proof. It By = y, then RB = B; if By = -y, then ¥(B)= . In both cases the
lemma is obvious, so let us assume that By # y and By 7 -y. We have <X(RB) = {(BR)
and, by the supposition, BR(By) = By. By the normal form theorem there exists a plane @
invariant under the rotation BR such that



4 (BR) = arc cos < q, BRq >
for every g € QnS""l. Of course, @ is orthogonal to By. By 6.4 we can choose
Qo € QnS""1 such that g, is also orthogonal to y. Then, since R is minimal, Rg, = ¢,. So
we have ¢(RB) = 4(BR) = arc cos < qy, BRgy > = arc cos < q,, Bg, > < ¥B.

Querry. Suppose z, y € S®! and R € SO, are such that Rz = y and
VB € SO, [By = z — ¥(RB) < <B] .
Must R be minimal? (This question was raised by H. J. Keisler.*)

Returning to the proof of Theorem 6.1, we will study the sequence B, = M,N"!. By (6-3)
and (6-5) we have By = N!, B,,, = R,B,, and R,B,y, = y,. Thus B, does not have the
eigenvalue -1 and, by Lemma 6.5, ¥B, < ¢ N = 7 - ¢ for some ¢ > 0 and all t. Hence, by
(6-1) and (6-5), §, = By, # -y, and the first part of Theorem 6.1 is proved.

For every t we choose coordinates in R™ in such a way that

( l’ [ cos p,’
0 sin p,
0 0
=1 . and By, =
RO J . 0 )
It follows that
[ . ) ¢ . \
cosp,sinp, 0 --- 0 cos p, —a, 8in p, a,3 * - a,,
-sinp,cosp, 0 --- 0 sin p; @, CO8 p, Gy3 **° Gy,
R‘ = 0 0 1 --- 0 y B‘ = 0 032 033 e asn y
\ 0 0 0 1 J \ 0 Gn2 Gyus Gnn )

where la,l <1, and

*H. J. Keisler, University of Wisconsin, Madison, 1985.
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.
10 0 s 0

0 a; a,y3c08 p, — ay38in py, *°°, @,y,CO8 py — @1,8In p,

By,y=RBy, = |0 ay Gss T G3n

Hence
tr(By11) - tr(B,) = (1 + a, {1 - cosp,) ,

and
(Bon) = r(B0) = 33 (1+ a1 ~cosp) )

Notice that @, ¢ -1 since otherwise B,,; would have the eigenvalue -1, conmtrary to
By <

Since we have also B, < 7 — ¢ for all t and since a, is a continuous function of B, and
¥;, by a simple compactness argument, there exists a § > 0 such that a, > -1 + 6 for all ¢.
Hence, by (6-7),

n-tr(N!) > 6§(1 - cospy) .
t=0

Since 27 2p? < 1 - cosp,, we get (6-6).

7. LEARNING TO PREDICT SEQUENCES OF SYMBOLS. [ will describe here
an algorithm A™, which was inspired by the work of D. R. Morrison [19], and an idea for creat-
ing alphabets that is due to A. Ehrenfeucht [presented here with his kind permission]. Recently

a number of papers studying algorithms related to Morrisons’ and mine were written |1, 2, 3, 4,
5, 6, 9, 10, 16, 18, 23, 24].

Reflecting upon the functioning of intelligence (rote learning) notice that: One memorizes
certain sequences of events. Then, when faced with a sequence that is a proper initial segment of
one that has been memorized, one predicts the future. Observe the speed with which prediction
occurs, seemingly unobstructed by the size of the set of memorized sequences.

I propose to formalize this as follows. Let ¥ be a finite ordered alphabet, and
Sp,00 = (ag, @y, . . .), an infinite sequence of letters from L. We denote by

S.‘,k = (a;, U TS PR a.'+k-1)

segments of So,oo- The segment obtained by omitting the first term of a segment S is denoted



S’. A natural way to predict @, on the basis of Sy, is the following. We find the longest seg-
ment S;, ; (0 < i < t) which occurs more than once in Sy,. We find also the largest ;7 < ¢
such that S;, ; = S, , ; and we put

~

A =814 »

that is, d, is the successor of S;,_; in Sy,. Since the search for these objects may be too long
(when t is very large), we define an algorithm A™ which also constructs a memory M, that facil-
itates this search. (But we shall not obey the requirement made above that j is the largest, since
this would induce an uninteresting complication.)

The state M, is the set of scgments S; x such that § + k < ¢, S,-"k occurs only once as a
segment of Sy, and, for each ¢, k is the least number for which this holds. There is one excep-
tion, however: the segment S"k with the largest § satisfying the above conditions is replaced by
the segment S;, ;. We call it the last segment (it is a final segment of Sy ;). Moreover, we
assume that M, is ordered lexicographically and that the last segment is marked, to be immedi-
ately accessible.

Given some segment S that occurs in Sy, M, allows one to find the continuations of all
occurrences of S in Sp,. One finds all S, ; of M, such that S is an initial segment of S; s or

S;  is an initial segment of S. Then one locates all S;; of M, such that S,"k are their initial
segments, etc. So if S appears only once in So',, one gets its continuation in So,t- If S appears
more times, one gets continuations of all those occurrences.

The algorithm A™ computes @, in the following way. It looks at the last segment S and
finds segments S;  in M, such that S'’ is initial in S; k- By the definition of S at least one
such S, ;. exists, and all of them must be longer than S . Then @, is the first letter of £ that
follows the initial part S'’ of such S; ; i k

Using the above information it is easy (but tedious) to define the remaining part of the
algorithm A™, namely the method for constructing Af,,, from M, and a,. We shall not
describe this part, but notice that, like the expected length of the computation of d,, the
expected length of the computation of M,,, will be a moderate function of log t. Thus we
observe that algorithm A™ is not easily obstructed by long texts.

7.1. Observation. (i). If the sequence Sy ., is eventually periodic, then, for all large
enough t, 4, = a,.

(ii). If G, = a, then M, ., differs from M, only by the addition of a, at the end of the
last segment.

Proof. (i). If S; ., is eventually periodic, then every segment S, ; with large enough &
equals a segment S ;. Which overlaps with the first occurrence of the period. This yiclds ().

ii). If S is the last segment of M, then S’’ occurs more than once in S, ,, and so does
t 0,
S"a, in Sy ,,,. Hence Say is the last segment of M.

11
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It appears that A~ is a good prediction algorithm for the letters (punctuation marks and
blank included) of an ordinary long enough English text. Also one can ‘‘think” by means of A™".
Namely, having accumulated a sizeable M,, one produces d;, @;,;, . ... This can make an
interesting pseudotext, a kind of echo to Sy,. (We could vary the choices of the letters d, by
dropping the requirement tht we choose always the first letter in £ that was available. We could
use instead some probability distribution over ¥ or some other idea. This will give more ori-
ginality to the “story” d;, 4y, - . ).

One feature of common texts may appear excessively arbitrary: the usual alphabet. A.
Ehkrenfeucht proposes the following change. One finds the frequency of pairs of consecutive
letters in a long English text. Then one marks the places between the letters with the frequen-
cies of the pair at that place. In this way one gets a sequence of real numbers. One divides the
text in all those places where that sequence has its local maxima. Experiments show that the
mean of the lengths of the resulting parts is about four letters. (Some statistical investigations
are still going on.)

We make a list of all those parts. Their frequencies decrease rather fast so that those parts
can be taken as letters of a “semifinite’” alphabet. The algorithm A™ applied to this kind of
spelling of ordinary English texts should be more interesting (although experiments have to begin
with a preparation of that alphabet). Preliminary experiments of A. Ehrenfeucht show that
those letters are similar to the morphemes of languages.

8. ACKNOWLEDGMENT. I am indebted to the late Stan Ulam for many conversa-
tions on the problems discussed here.
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