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In summary, consistency between the inertial-frame and comoving-frame
equations requires that all O(v/c) terms be retained in both gas-energy
equations, in the radiation energy equation, and in the transformation laws
between frames [see also (P4)]. In contrast, all O(v/c) terms can be omitted
from the radiation momentum equation without loss of consistency.

Finally, consider the inertial-frame momentum equation (94. 13b), which
for spherically symmetric ffow reduces to

D’u – Gkfrp dp

[
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(96.24)

On a fluid-flow time scale the term containing (dE/dt) is 0(v2/c2) relative
to (d F’/dr), and therefore can be dropped. Similarly all terms containing F
are at most O(o/c) relative to the terms in E and P. Hence to obtain a final

result accurate to O(v/c) it is sufficient to set F = FO, but all terms must be
retained in transforming from (E, P) to (~0, E’o). Making these conversions

we find

(96.25)

which is icfent ical to the comoving-frame equation (96.3). Thus consistency
of the momentum equation between frames is assured if, and only if, one
accounts for O(u/c) terms in both frames.

Similarly, in light of (93.10) and (93.11) the inertial-frame moment urn
equation (94. 13a) for a spherically symmetric flow of grey material is

p(Dv/Dt) = –(GM,p/r2) – (dp/~r) + (Ko/c)[F– (u/c)(J3 + F’)]+ 0(v2/c2),

(96.26)

which, from (91. 19), is identical to the comoving-frame equation (96.2) for

grey material. Again we see that the O(v/c) terms are essential for
consistency.

7.3 Solution of the Equations of Radiation Hydrodynamics

MATHEMATICAL STRUCTURE OF THE PRO13LEM

In $$93 to 96 we formulated the equations of radiation hydrodynamics in
both the Eulerian and Lagrangean frames; we now ask how to solve them.
In this connection it is instructive to count the number of variables to be
determined and the number of equations available to determine them, as in

$24. As before we must find seven fluid variables: p, p, T, e, and three
components of v; in addition we must now find ten radiation variables: E,
the three components of F, and the six nonredundant components of P.

. .
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These seventeen variables are related by nine partial differential equations:
the equation of continuity, the material energy equation including radiation
terms, three components of the material momentum equation, the radia-
tion energy equation, and three components of the radiation momentum
equation. In addition we have two material constitutive relations: the

pressure and caloric equations of state. (We assume that the material
opacity and emissivity are given as functions of, say, p and T.) We are thus
short by six equations, which in effect are closure relations relating Pii to E.

These relations can be specified a priori in the diffusion regime, but in
general they must be determined either iteratively, or from some ad hoc
prescription (cf. S78). In addition we must specify appropriate boundary
and initial conditions.

The equations of radiation hydrodynamics in two- and three-dimensional
flows are truly formidable; indeed they have never been solved for nontri-
vial problems except in the limit of radiation difiision. We shall therefore

confine our attention to one-dimensional flows, in which case we need to
detemline only eight variables (p, p, T, e, v,, E, F, P) from a total of five
differential equations and two const it utive relations; here we need to
specify on [y one Eddington factor ~ = P/E in order to complete the system.

N-LNIERICAL APPROACH

To handle the coupled system described above we replace the differential
equations by suitable. discrete approximations and solve these numerically.
At this juncture it suffices to describe the procedure verbally, reserving a
presentation of difference. equations for a specific example in $98.

Suppose we wish to solve the Lagrangean equations of radiation hyd-
rody namics in one-dilnensional planar or spherical geometry. We divide
the medium into discrete cells, locating velocities at cell interfaces and
material properties (density, pressure, etc.) at cell centers, as we did in the
absence of radiation (cf. Chapter 5). In the momentum equation we need
to know the radiation force (hence the flLIx) at the same locations as fluid
velocities and accelerations (i.e., the interfaces). On the other hand, to

apply the first law of thermodynamics to the radiating fluid we need to
know the radiation energy density and pressure at the same locations as
their material counterparts (ie., cell centers). Hence we solve the time-
dependent radiation moment equations on the same mesh as used for the
static transfer equation in Chapter 6.

Next consider the tilme centering of the variables. For simplicity we

assume that, as in Chapter 5, we use an explicit form of the momentum
equation. As before we time center material properties at t“and velocities
at t ‘-[LIZ)=~(t”-’ + tw) To advance the Ve]ocity fl-om tm-t’/2J to t“-’-fllz) we

need to know the external forces, the pressure gradient, and the radiation
force, all at t“; thus radiation forces, whether computed from the flux as in
(96.2) or from the gradient of the radiation pressure as in (96.5), should be
centered at tn. Given velocities o ‘-’-(’‘2) we can advance the interface
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positions from t“ to t“+ 1, and by continuity update the material density to
t“+]. For a nonradiating fluid, we determine T, hence e and p, at t’--’ from
an implicit form of the material energy equation. For a radiating fluid, we
must solve implicit forms of the material energy equation, including
radiation terms, simultaneously with the radiation energy and momentum
equations to determine T, e, p, E, P, and (if needed) F at t“”-’. Clearly the
radiation quantities must be centered at the same time level as the material

properties (i.e., at tn and tn+’)-
Integration of the momentum equation including radiation forces differs

only trivially from the cases considered in Chapter 5, hence we focus here
primarily on the question of how to formulate and solve the coupled
material and radiation energy equations at the advanced time t“’~. We
discuss first the diffusion 1imit, then the Lagrangean equations, and finally
two F,ulerian or mixed-frame approaches. We apply some of these methods
in Chapter 8.

97. Radiation Dijfusion Methods

OVERVIEW
We saw in $80 that in static material the radiation field in the equilibrium

diffusion regime is determined by local fluid properties and their gradients.
We will now show that one can also develop an asymptotic solution of the

transfer equation and obtain an explicit analytical expression for the radia-
tion stress-energy tensor in an opaque mooing medium. These results
afford deep insight into the dynamical effects of radiation in a radiating
flow. One can use the analytical form of the stress-energy tensor directly in
the energy and momentum equations for the radiating fluid, and thus, in
effect, dispense with the transfer equation altogether. We shall treat only
nonrelativistic flows; the diffusion approximation in relativistic flows is
discussed in (Gl). Furthermore we assume pure absorption and ignore
scattering; generalizations to include scattering in the Thomson limit can
be found in (H2) and (Ml), and in the Compton limit in (M2).

The basic assumption made in radiation diffusion theory is that the
material is extremely opaque, so that (AP/l) <<1. If the material is moving,
we must also recognize a second independent small parameter, namely
(v/c) <<1. Our goal is to obtain an expression for the radiation stress-energy
tensor by solving the transfer equation through an expansion in terms of
these small parameters. As we will see, in the comoving frame (but not the
inertial frame) the lowest-order terms that appear in the solution are

O(A,,/ 1), terms of O(v/c) being entirely absent. Thus we can develop a
first-order diffusion theory for the comoving-frame radiation field by
ignoring fluid motions even in moving material.

The next-higher-order terms will be O(A,,v/lc), 0(A~/12), and 0(u2/c2).
Of these, the O(APv/ lc) terms are the most important, being of first order in
each of the physically interesting small parameters; we call the expression
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containing these terms the “second-order” solution. Terms of 0(A~/12)
have never been treated; those of O(vz/c2) are contained implicitly in the
covariant expression for the stress-energy tensor F!WGgiven later. While

one expects intuitively the O(APu/ Ic) terms to be more ilnportant than the
other second-order terms, it must be admitted that no rigorous analysis has
ever been made to justify this assumption.

One should note that the relative size of the two independent expansion
parameters is important because one has static ciijfwsion when (u/c)<< (kP/l),
so that td<<tfand photon diffusion limits the rate of energy flow, and
dynamic diffusion when (v/c) = (xP/l) and advection of energy by the
moving fluid sets the effective rate of energy transport (cf. $$93 and 96).

The assumption of equilibrium is restrictive, and certainly will fail near a

boundary surface from which radiation escapes freely. To extend the range
of applicability of the theory, one can drop the strong assumption of
thermal equilibrium and construct a nonequil ibriu[m cliffusion theory that
invokes simple relations among the radiation moments, but does not

presume that the intensity equals the Planck function at the local material
temperature.

In practice it is found that diffusion theory predicts too rapid an energy
transport where photon mean free paths become comparable to charac-
teristic structural lengths in the flow. One way to overcome this problem is
to introduce flux limiters that restrict the energy transport to physically
allowable values. This approach is convenient and has been applied exten-

sively, but lacks the accuracy of a consistent solution of the full transport
equation (cf. S98).

THE ZERO-ORDER AND FIRYr-ORD ER EQti ILIBRI LLkl D1FFUS1OK APPROXIMATE ONS

In a static medium, the radiation field thermalizes to the Planck function as
soon as the material is effectively thick. 1n moving material, the radiation
field can achieve local thermal equilibrium on Iy if a photon is destroyed in
essentially the same physical environment as it was created, before local
conditions are modified significantly by fluid flow. That is, the mean time
between absorption, th = Ap/c, must be much smaller than a fluid-flow time

tf = l/v, which implies that we must have (AUv/lc) <<1, a condition that
obviously will be met at great depth in, say, a stellar envelope where both
(AP/l) <<1 and (v/c]<< 1.

The simplest physical situation is when the material is so homogeneous
within an interaction volume that we can neglect all gradients; formally this
regime corresponds to the limit (AP/1)~ O. Thus, dividing both sides of
(95 .84) and (95.85) (for grey material) by XO and letting XO+ ~ we find

that EG = (4m-/c)(qO/X~,) = (47r/c)B (T) = a~T4, where T is the material
temperature, and that F.+ O. Moreover, in the absence of gradients the
radiation field is isotropic so PO = ~Eo = ~a~T4. Similar arguments applied
to (95.82) and (95.83) show that EO(UO)= 3PO(UO)= (47r/c)B(v0, T), and
FO(VO)a O. Hence a consistent zero-order, comoving-frame radiation
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stress-energy tensor in the equilibrium diffusion limit is

(URT4RO= o

0 iaRT41 )
(97.1)

Here I denotes the 3 X 3 unit matrix. From (97.1) we see that for
radiation, just as for an ordinary material gas, transport effects vanish when
(A,/1) + o.

To obtain a first-order expression for RO we now assume that terms of
O(LO/ 1) are nonvanishing, but drop all terms of higher order. Consider first
the monochromatic radiation momentum equation (95 .83) in the isotropic
limit, and ignore acceleration terms. Dimensional analysis suggests that on
a fluid-ffow time scale, all terms containing F. and QO on the left-hand side
are O(Apv/lc) relative to the term on the right-hand side, and thus can be
dropped in a first-order solution. We then obtain

FO(VO)= –[c/xO(vO)] V “ PO(VO)= –[4n/3xO(vO)]V13 (v0, T), (97.2)

hence

FO= –(c/3x~)V(aJ<T4) = –$zRcA,<T3VT = – ~RVT, (97.3)

where xi is the Rosseland mean opacity evaluated in the cornoving frame,
and AR = l/x~ is the Rosseland mean free path for photons. From (97.3) it
is clear that c–’ FO is O(Ao/ 1) relative to EO or PO.

It is noteworthy that (97.3), which applies in a moving fluid, is identical
in mathematical form to (80.8) for a static medium. Physically this result

states that because (AP/1)<<1, each fluid element is essentially “unaware”
that it is moving, because the radius of the horizon from which it “sees”
photons is minuscule compared to the scale of the flow; hence the flux
measured in the fluid frame saturates to its static value as determined by
the local temperature gradient within the fluid element.

Next consider the radiation energy equation (95.84). Given (97.3),
dimensional analysis suggests that all terms on the left-hand side are either

0( A~/12) or O(APv/lc) relative to EO; hence the departure of Et} from u.~T4
is at most second-order. Therefore a consistent first-order expression for
the comovi rig-frame radiation stress-energy tensor in the equilibrium diffu-
sion regime is

(
1

aRT4 –——— V(aRT4)
3 x~

)

(

a~T4
R.=

- (KR/c)V——
1 -(JQc)VT 7~a~T”l “

— V(aKT4)
– 3XR

$a~T41

(97.4)

We emphasize that (97.4), which contains the standard expressions used in
stellar interiors work, applies in the comoving frame only. Tn particular,
(97.3) should not be used as an expression for the inertial-frame flux F,
which differs from FO by terms that are often much larger than FO itself [cf.
(91.17) and (93.13)].
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Equation (97.4] reveals the interesting fact that to first order the

radiation stress-en ergy tensor contains a “conductive” energy flux, but no
viscous stress, in contrast to ordinary gas dynamics where these terms are

of the same order. We will see 1ater that radiative viscosity is O(ApV/ lc)
relative to F’O.

By using (97.2) in (96.2), or by writing PO= ~EC)= ~a~T4 and discarding
O(APv/lc) terms in (96.3), we see that the comoving-frame momentum
equation in the first-order equilibrium diffusion approximation is

p(Dv/Dt) = f–V(p +&LKT4); (97.5)

the radiating fluid thus behaves dynamically like an ideal gas whose total
pressure is the sum of the gas and radiation pressure (both isotropic).
Equation (97 .5) is the standard momentum equation used in dynamical

stellar structure calculations [see, e.g., (C4, eq. 2), (C5, eq. 27.15), (Fl, eq.
2), (K7, eq. 2), (Ll, eq. 2.55), or (S3, eq. 3.24)].

The most LISefUlform of the energy equation in the equilibrium cliffusion

regime is (96.9), the first law of thermociynamics for the radiating fluid.
Using the first-order solution (97.4) in (96.9) we find

%’++) ()-t(p+~aKTA) g 1 =~V . (K~VT)+&,
Dtpp

(97.6)

which for one-dimensional spherically symmetric flow reduces to

At the risk of tedious repetition we again emphasize that all quantities in
these equations are measured in the comoving frame. Equation (97.7) is
the standard energy equation used in dynamicaf stellar-structure calcula-

tions [see, e.g., (C4, eq. 4), (C5, eq. 27.1 6), (Fl, eq. 4), (K7, eq. 3), (L2, eq.
52.1), or (S3, eq. 3.19)].

Within the framework of one-dimensional Lagrangean hydrodynamics
we may regard p and (Dp/Dt) as known in the discrete representation of

(97 .7) spanning the interval (t”, tn’-’).Therefore, (97.7) basically has the

mathematical form of a heat conduction eq uat ion with nonlinear coeffi-
cients. Accordingly, to avoid stringent timestep limitations, we use an
implicit (e.g., backward Elder) time-difierencing scheme. Then, (97.7)

(including artifical viscosity terms—cf. $59— and ~ith suitable boundary
conditions) provides a tridiagonal system of nonlinear equations for TVl~\lz)
at cell centers. As in $88 we linearize this system around some current
estimate T~+(l,2), obtaining a system of the form

–Ai+(l/2) ~Ti-(]/2) + ~i--(l/2) ~’_f’i+(l/2) – Ct+.(l ,2) i5Ti,.(~,2)
= R,+(l,z), (i= 1,...,1), (97.8)

which is solved by Gaussian elimination. This process is iterated to
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convergence. Having obtained T”-’, we know e, p, EO, and PO at t”- 1, and
can then integrate the momentum equation (97.5) from t’L-E(l’2)to t“+(3’a.
In short, in the equilibrium diffusion regime the dynamical equations for a
radiatjng fluid are relatively easy to solve.

Finally, we can obtain the inertial-frame radiation stress-energy tensor
in the first-order equilibrium diffusion limit by applying the transforma-

tions (91. 10)–(91. 12) to (97.4). To O(u/c) the lmain effect is to replace
the Lagrangean flLIx by the Eulerian flux, cf. (93. 14). Thus using (97.4) and

(91 .17) in (94.21) one finds that the Eulerian energy equation, correct to
O(u/c), for a radiating fluid in the equilibrium diffusion regime is

(pe + a~T4),, +V” [(pe + a~T4)v]+ (p+~aKT4)V” v= V” (K~VT)-I pe.

(97.9)

Because the material properties are functions of (p, ‘T), (97.9) suffices to
determine T at t“+’. A simple rearrangement reduces (97.9) to (97.6); the

same result is obtained by starting from (94.22) and making O(ti/c)
transforrnatjons of inertial-frame radiation quantities into the fluid frame
[see also (P4)].

THE “SECOND-ORDER’ EQUILIBRIUM 01FFUS1ON APPROXIM.4TION

In first-order diffusion theory we dropped time derivatives and velocity-
dependent terms and obtained a radiation stress-energy tensor comprising
an energy density, an isotropic pressure, and an energy flux proportional to
the local temperature gradient. We now develop the next level of approxi-
mation, retaining terms of O(kPv/lc); the radiation stress-energy tensor
then contains dissipative terms corresponding to radiative viscosity. The
main purpose of the discussion is to exhibit the complete one-to-one
correspondence that exists between the dynamical behavior of radiation in
the djffusion regime and that of a viscous, heat-conducting, relativistic

material fluid as described in $4.3.
Radiative viscosity was first discussed by Jeans (Jl), (J2) and Milne

(M14), (M15), who concluded that it provides an eflicjent mechanism for
angular momentum transport in stellar interiors, and promotes solid-body
rotation of stars. Their analyses al-e not relativistically correct, and some of
their formulae are flawed. The correct formulae were first derived in a

penetrating paper by L. H. Thomas (Tl), and later, in manifestly covariant
analyses, by Hazel hurst and Sargent (HI) and by Simon (S4).

The approach followed by Thomas is to use (89.5), (90.6), and (90.8) to
write the mixed-frame transfer equation in Cartesian coordinates as

[C-l (d/d~) + II o v]~(n, V) = (L’/VO)2’TfO(Vo)- (V./ V) Ko(V~) ~(n, V)

= [(1 – v2/c2)/(1 –n “v/c)2]qO(vO) (97.10)

‘[(l ‘n. V/C)/(l “U2/C2)’’2]Ko(V~)~ (n, v),

and then, starting from the LTE solution 1 = q(l/~O, to solve (97.10) by
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iteration, which yields

I(n ~)= (1– v2/c2)3/*n
(~–n “ V/C)’ K.

(1–zF/c*)”* 1 1 d—
(1-nv,c] ~(;~+n”v)~=~!v~+ “7”’1)

One can then evaluate R by direct integration of l(n, v) over o and u. The
calculation is straightforward, but lengthy and cumbersome, and the rear-
rangement of terms in the final expression for R (Tl, eq. 7 ancl the
unnumbered equation on p. 248) into a covariant form (Tl, eqs. 7.1 and 8)
is rather tricky.

The most physically appealing approach is Simon’s, who used the Eckart
decomposition theorem to express R in terms of quantities that are easily
evaluated in the comoving frame; we follow Simon’s analysis here. Apply-
ing (44.14) to the tensor W“@ = C*Rae we can write

R@ = ~~~ + c-’(~avfi + V“@ + 8V”VB) (97.12)

where
g = C-2 vu vp~fi (97.13a)

@ = –S~Rb7Vy> (97.13b)

and
~@ = S;S~R@. (97.13C)

Here S; is the projection tensor defined by (44.2]; we use a different letter
for it here to avoid confusion with the radiation pressure tensor P.

Because Va is orthogonal to S;, it is orthogonal to both %“ and ~w~,
which implies that

$“ = .,@/c,

and that
y~~ = piivijc

and

P“” = Wkiujtc’.

In the comoving frame where V: = (c, O, 0, O), we thus have

9;”=0,

an d

%:=0

and hence from (97. 12)

9:=P:=R:,

9; =F; = R:;,
and

~0= Eo= R:”.

These results are completely general.

(97.14)

(97.15a)

(97.15b)

(97.16a)

(97.16b)

(97. 17a)

(97.17b)

(97.17C)
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SLIpposc now that in the comoving frame LTE obtains, so that ~o(vo) =

KO(VO)B (vo, T) where T is the material tempe~atu~e measured in the
comoving frame. Then the cornoving-frame emissivity can be written in
terms of invariants as

e~ = a~g~, (97.1 8)

where g: is the invariant photon distribution function for blackbody

radiation at rest relative to the observer, that is,

g:= (c2/~4. 3 B
UO) (%, T) = (Yh?[exp (hvO/kT) – 1]-1, (97.19)

and ~0 is the invariant opacity

@(%) = hVoKo(Vo) = hVoKo, (97.20)

where KO is a world scalar.
In order to generalize (97.18) to an arbitrary frame, we notice that

A4,,v’x==—hvo ; (97.21)

hence the appropriate covariant generalization of g: is

g~ = (2/hq)[exp (–M.V”/kT)– 1]-1 (97.22)

and the covariant generalization of ti,Ois

47.= (–M,,VC’)KO. (97.23)

Thus for LTE in the fluid frame the photon Boltzmann equation (92.6) in
an arbitrary inertial frame is

J’vf”fR,a= (–M.v’/c)Ko(gR –fR), (97.24)

where for convenience we have temporarily adopted Cartesian coordinates.
To obtain an approximation for f~, we assume that in the diffusion

regime ~~ does not differ much from g~, and use (97.24) to develop the
expansion

fR = &2 + (~/&~ctv”)~%R,cx + . . . . (97.25)

In (97.25), gR depends on x“ because both T and V“ are functions of x“.
We could now follow Thomas and use (97.25) in (91..2) to calculate R-6

directly. It is much simpler, however, to carry out the calculation in the
cornoving frame, and then reconstruct R in the inertial frame via (97.12) to
(97.17).

Because V,, V:~ = O, (V!Y)O = O in the comoving frame. Therefore in
this frame

(W’g,,>a)o = M:[(dgJdT)T,. + (MJ~vfi)%]o
(97.26)

——kf:[(dgfym)(dvdx:)+ (agRlav’)()(av’/~ xa)cll.

From (97.20)

(dg&/dT) = (c2/h4V;)[dB(V0, T)/dT], (97.27)
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and from (97.22)

dg~

–()

2 (Mti/kT) exp (–MaV”/kT)

av”= G [exp (-MmV”/kT) - 1]2 ‘
(97.28)

whence

(dgR/dVi)O = (Tn,/c)(dg~/dT). (97.29)

Substituting (97.26) to (97.29) into (97.25), evaluated in the comoving
frame, we obtain

We can now evaluate RO by substituting (97.30) into (91.2). Recalling
that c13M= M* ch’vldco = h3c-3v2 dv do+ we see from (97.17c) and (91.3)
that

/“ $
??%O= dvo dcoO(h4v~/c3)f~

o

4’IT

[ (

1 dB(T) dT T a v;——~ B(T)–n — ~-t —(n”ni)O—
K~ dT dxo c ax; )1

Here

B(T) = (c/4m)a~T4

and K ~ is the comoving-frame Rosseland mean

-=J

w 1 t)B(vo, T)I_
dvo

1~

- dB(vo, T)
duo,

K; o K~(~O) dT o (3T

a world scalar. Noting that

we can rewrite (97.31) as

( )(4 aRT4
~o=a.~–– —

dv~ 3C d“r

)
—+—~

3 CK$ dx; T (3X.

Similarly, using (97.30) in (97.17b) and (91.4] we find

i )(4 a~T4 C2 dT 8v;y;=–– — ——+c —
3 CK: T dX: )ax: “

Finally, from (97.1 7a) and (91 .1] we obtain

(97.31)

(97.32)

(97.33)

(97.34)

(97.35)

(97.36)
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(97.39)

Equations (97.35), (97.36), and (97.39) apply in the comoving frame. To
generalize these expressions to an arbitrary frame, in particular the lab
frame, we merely cast them into covariant forms that reduce to the correct
results in the cornoving fralme. Let

PR ‘fi(aRT4/CK:) = (T/5 C2)KR (97.40)

be the coefficient of radiative viscosity, a world scalar; K~ is the radiative
conductivity as defined in (9’7.3). From (97.35) we see by inspection that a
covariant expression for ~ is

To write a covariant expression for W we note from (97. 16b) and (97.36)
that the comoving-frame flux has nonvanishing space components but a
vanishing time component. We can assure this behavior by writing .%a in
terms of the projection tensor as

p= –&(7’B +c-zTA@)(g”@ +C-2V”VB). (97.42)

This expression is exactly analogous to Eckart’s covariant material heat-
conduction vector (46.22); it differs from Simon’s (S4) equation (82), which
is not. By similar reasoning, we replace the JG-onecker deltas in (97.39)
with projection tensors, and noting that

(v”v@v’);, = v“v~y!!+ v“v’v~+ v@vnf;, (97.43)

we find that (97.39) can be written covariantly as

YCXB= ~aRT4(gtiB + c-zvc’v~) –&LR[g”~v:+ gw’;+ g“’v\

+ C-2( V”VGV7):V + 5V7(ln T),y(ga@ +C-2VV”)].
(97.44)

Finally, substituting (97.41), (97.42), and (97.44) into (97.12) we find
that the covariant expression for the diffusion-limit radiation stress-energy
tensor in an arbitrary frame is

R“@ = ~aRT4(g “B +4c–2v”v~)– ~R[gw:,+ gw:+ g’”v~

i-6c-2(VmVBV’),V (97.45)

+5(ln T),v(g”@Vv + g@vV” + gC”VP +6c-2V”V~V”)].

Aside from minor differences in notation, this result is identical to
Thomas’s (Tl). Equation (97.45) is the direct analogue, for radiation, of
(45 .3) for matter.

Equations (97 .41), (97.42), (97 .44), and (97 .45) are relativistically cor-
rect, and apply in all frames. To gain physical insight it is most instructive
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to work in the comoving frame, developing a solution that is internally
consistent to O(AUu/lc). Thus, reducing (97.41) to (97.44) to the comoving
frame, we find [cf. (97.34) to (97.39)]

EO = aRT4–5w. [3(f3 In T/11(] +V . v], (97.46)

(Fo), = -&( T,, + c-2 Tai), (97.47)
and

P~=[~aKT4–5~~(D in T/Dt)] ~ii–~n(v~~ 8ki+v~k ~ik+o~k 8ii).

(97,48)

We can cast (97.48) into the same form as the stress tensor for a
Newtonian fluid [cf. (25.3)], that is

P:= ~ 8“ –2K~Dii – &V~k ~ii (97.49)

where

9=~a,T4–5~R(D1n ‘r/Dt) (97.50)

is the isotropic component of the radiation pressure, Dii is the traceless
rate-of-strain tensor (32.34), and

<R =$~R. (97.51)

It is obvious from (97.49) why ~~ is called the viscosity coefficient for
radiation.

The corresponding results in curvilinear coordinates are obtained by
replacing i$j with g,j and ordinary derivatives with covariant derivatives.

A dimensional analysis of (97.46) and (97.50) suggests that the depar-
tures of EO from a~T4 and of @ from ~aKT4 are both O(APv/lc] relative to
the dominant terms; hence when v/c }>Au/l these departures can be larger
than in a static medi urn [where they are 0(@12), cf. 580]. The radiative
viscous terms in (97.49) are also O(A~u/ k) relative to the leading term.
Furthermore, from (97 .46) we can now verify the result cited in 3593 and
95 that the net absorption-emission term K(47rB – cIZ) in the radiation
energy equation is O(v/ 1)E for dynamic diffusion [compared to O(cAP/ 12)E
for static cliffusion]. Analysis of (97.47) suggests that the acceleration term
is only 0(u2/c2) relative to the leading term of the flux. Normally we w’ould
drop a term of this order, but we retain it here for reasons that will emerge
below.

Radiative viscosity arises because photons deposi~ their momentum in
the fluid element in which they are absorbed; it is thus a direct analogue of
molecular viscosity. In both cases, momentum exchange via particle mo-
tions within the fluid produces a frictional force, with faster-moving
elements tending to drag along slower elements, and vice versa. Indeed, it
is easy to derive the coefficient of radiative viscosity from simple mean-
free-path arguments. Consider photons emitted from the origin 0, travel-
ing along the positive x axis until they are absorbed at P, one mean free
path L,, from O. Let the material have a velocity shear (dIJ/dx) pal-allel to
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the y axis. Then, owing to aberration, photons of frequency v emitted from

O will have a y component of momentum p,, = –(hzJ/c) sin O, where sin o =
IJojc = AP(dzjdx)/c, when they are absorbed at P. Hence the radiative
viscous force on a fluid element at P with cross section ~A perpendicular

to the x axis is fY(v) =–(cnV 8A) x (ltv/c) x (AJc)(dc/dx), where n,, is the
photon number density. Summing over all energies we find fY=
–(a~T4Ar,/c)(dv/dx), whence we identify ~K - (a~T4kJc), which, aside
from a numerical factor, is (97.40).

One can define a radiative Reynolds number Re~ by substituting p~ into
(28.1). Dimensional analysis suggests that Re~ - (t+t,) X (material kinetic
energy density/radiation energy density). Thus the radiative Reynolds
number can be small, hence radiative viscous effects important, when the
radiant energy density is large compared to the material energy density

(i.e., at high tenlperatures) and/or when the photon mean free path is long.

From (97.49) and (97.5 1) it also appears that radiation has a substantial
bulk viscosity <K. As emphasized by Weinberg (WI) it is necessary to make
a deeper inquiry about this quantity. In particular he notes the proof by
Tisza (T2) that bulk viscosity is absent in any gas for which the trace of the
total stress-energy tensor is expressible as a function of on Iy pOOc2,the total
energy density, and/or n, the particle number density. This is the case for a

gas of structureless point particles in both the nonrelativistic and extreme
relativistic limits [cf. (43.50) and (43.53)], hence for a gas of photons.
Therefore one would expect photons to have zero bulk viscosity when
interacting with relativistic material particles, in apparent contradiction to

(97.5 1). Moreover, according to (97.46), the comoving-frame energy
density contains dissipative terms, in contradiction to the general result
from Eckart’s theory (cf. $$44 and 45) that

(“%OuS + ‘K:lciuctio,n) ‘cxv~ ‘o (97.52)

Weinberg demonstrates that these apparent contradictions can be resol-
ved by noticing that while Thomas and Eckart define particle number
density in the same way, they use different definitions for the temperature.
Thomas uses the material temperature T measured by a comoving ob-

server, whereas Eckart defines a temperature Tx by the requirement that
the comoving-frame energy density c ‘2 VCKVBMC’Bequal the total energy

density > = czpoo(n, TX) in thermal equilibrium at temperature TX, Wein-
berg shows that

(H

,.
“ 1 (dp/dT)n ~ “

T–T*=15pR * ––
d-r . 13 (d;/dT),q “ ‘

(97.53)

that when this difference is taken into account, Thomas’s results are
consistent with Eckart’s general theory, and that in (97.49) one now has

I% = %(a~T$/cK~) (97.54)

and

<,<= 15!-%[(dp/d2). –+]2. (97.55)
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From (43.50) and (43.53) we see that (97.55) yields zero radiative bulk
viscosity when the radiation interacts with extremely relativistic material,
and reduces to Thomas’s expression when the materiaf is nonrelativistic.

The physical essence of the preceding analysis is that in the diffusion
regime a radiating fluid behaves, in the colmoving fralme, like a viscous,
heat-conducting gas that has a total “internal” energy density (per gram)

etOt = e +( EO/pO) (97.56)

a total hydrostatic pressure

Ptot = P + p, (97.57)

a total energy flux

q,~, = q+F~ = –(K+KK)(VT+c-2Ta), (97.58)

and a total viscous stress tensor

Adopting this view, we should be able to obtain valid momentum and
gas-energy equations for the radiating fluid using the analysis of $S46 and
47 for a nonideal relativistic fluid. For example, reduction of the momen-

tum equation (47.3) to O(v/c) in the comoving frame in a spherically
symmetric flow gives

Here we ignored material bulk viscosity, and dropped one term,
–(c-2<V Qv)a,, which is formally 0(u2/c2).

We can check (97.60) by comparing it to (96.1) (to which material
viscous and conduction terms are added) in which the comoving-frame

radiative force term GC, is evaluated using (95.88) or (95.85), with Eo, FO,
and F’. obtained from (97.46) to (97.50). Thus computing the rr component
of P. from (97.49) we find

whence, from (97 .46) and (97 .50), we have

(3F’0 - Eo)/r = –4v~[d(u/r)/dr]. (97.62)

Using (97 .61 ) and (97.62) in (95.85) we reproduce the radiative terms in
(97.60) exactly, which is very satisfying.

Furthermore, we can now give a precise physical interpretation of the
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acceleration terms in (95.88): they account for the equivalent inertia of the

radiation enthalpy density, playing the same role as the material enthalpy
terms in pOOOin (96.1). Similar] y the terms C-2[F0 “(Vv) + FO(V . v)] in
(95.88) account for the interaction of the radiation lmomenturn density with
the shear-flow field, playing the same role as the last three terms in (47.3),
which account for the inert ia of the material heat flux. Final] y,
c-2(DF0/Dt) accounts for the rate of change of the momentum density of
the radiation field [cf. (96.4)], and plays essentially the same role as pa, for
the matter.

Dimensional analysis of (97.60) suggests that C-2(EO+ Y)a, is 0(vz/c2)
relative to d@/?r, while all of the radiation viscosity and flLLxterms on the
right-hand side of (97.60) are O(Auv/lc). The former can thus be dropped
(along with the corresponding material terms) because we have already
omitted all other terms that are formally 0(u2/c2), while all of the latter
must be retained if the treatment of radiation viscosity effects in the
momentum equation is to be consistent.

Similarly, reducing the gas energy equation (46. 15) to O(u/c) in the
comoving frame with the help of (46.7) and adding a thermonuclear
energy-release term we find that

E(’+:)+(P+%!H;)I
(~+K.)v.v~T

(97.63)

=peO+@– V”(q+FO) –$a. (q+FO)t
C2 Dt

where @ is the total dissipation function

@=2(w + KR)DiiD’j + <R(V . V)’. (97.64)

Again, we have ignored the bulk viscosity of the material.
We can check (97.63) for spherical y symmetric flow by comparing it to

(96.6), to which we add material viscous and conduction terms, and
calculate the radiation energy-deposition rate cG~ from (95.87) or (95.84).
Thus using (97.61) and (97.62) we recover all the radiative terms in (97.63)
except the last term on the right-hand side. The origin of the discrepancy is
obscure, but dimensional analysis suggests that the term in question is
formally only 0(v2/c2) relative to V . FO and could therefore be neglected
(but see below). The term may correspond to a high-order term omitted
from (95.87), which is formally accurate only to O(v/c).

From (97.63) and (97.64) we see that radiation generates entropy in a
radiating fluid both by energy transport down a temperature gradient and
by viscous dissipation, in complete parallelism with the corresponding
material processes. Furthermore, we can now interpret the a “FO term in
the comovi rig-frame radiation energy equation physically as accounting for
the equivalent inertia of the radiant energy flow, playing the same role as
the inertia of thermal heat conduction in material (cf. $46).
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Dimensional analysis of (97.63) suggests that the terms containing I-LRin
(97.46) and (97.48), and the acceleration term in (97.47), all give rise to
terms in (97.63) that are of the same order as @ and the term containing
a” FO. Thus if we wish to study the effects of radiative viscous dissipation
we should retain all terms in (97.46) to (97.48) and in (97.63) for
consistency. However, at this point we must note the disturbing fact that
the dimensional analysis suggest that all of the radiative dissipative terms in

(97.63) are formally only 0(v2/c2) relative to the leading term V “F,!
This result may indicate that (97 .63) is inadequate to describe radiative

viscous effects because neither the comoving-frame radiation energy equa-
tion, nor (97.46) to (97.48) for RO, are formally accurate to 0(02/c2) and,
furthermore, 0(v2/c2) effects have also been omitted from the material
terlms. Actually the situation is completely analogous to that discussed in

351 for the damping of acoustic waves by material viscosity and thermal
conduct ion: viscous terms affect the momentum balance (whereas conduc-
tion terms do not) while conduction terms dominate the energy dissipation
(whereas viscous terms are negligible because they are of second order in
the velocity perturbation).

The dimensional analysis used above may not be accurate in every case,
and for some flows the radiative dissipative terms may be larger, see (M7).
But in any event, we conclude that radiative viscous dissipation is generally

small for nonrelativistic fluids, in harmony with the conclusions of Cox (C5,
$27.6d) and Kopal (KS), (K6) that the effects of both radiative and material
viscosity on stellar pulsation are negligible compared to “turbulent viscos-

ity” produced by convective motions in stellar envelopes.
Equations (97 .46) to (97.51) provide an accurate radiation stress-energy

tensor in the diffusion limit, as needed for, say, dynamical stellar evolution
calculations. But it would be laborious to implement the full equations in a
computation, and it is natural to ask whether any terms can be dropped in
practical applications. A variety of simplified equations for treating radia-
tive viscous effects have been proposed. For example, Simon (S4)
suggested that the (11/11) terms can be dropped in both (97.46) and
(97.48). This omission is unsatisfactory in general because dimensional
analysis suggests that afl the terms containing PR in these actuations are of
the same order. Therefore, if we choose to retain the viscous stress in

(97.49), we must retain (DT/Dt) in (97.50); we then must retain all terms
in (97.46) to guarantee that trace PO= EO. More revealing, using (97.46) to
(97.48) in the comoving-frame radiation energy equation (95.84) for a

planar, grey medium we find that we must retain all terms in (97.46) in
order to obtain internal consistency to O(&u/ lc); in particular, omission
of the (11/llt) term in (97.46) is tantamount to dropping (DEC)/Dt) in
(95.84), which is obviously unacceptable.

Similar criticisms may be leveled at simplified forms of the momentum
and energy equations that have been derived by Newtonian reasoning. For
example, in the two standard works on stellar pulsation and stability by
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Ledoux (Ll) and Ledoux and Walraven (L2), the momentum equation for
the radiating fluid is taken to be

~(~v~/~t) = fi + (p + pR),i + gij~{$ (97.65)

where ai; is the total viscous stress tensor (97.59) [cf. eqs. (2.14) and (2.55)

of (Ll) and eqs. (48.4) and (50.1) of (L2)]. The first law of thermodynamics
for the radiating fluid is written

“[:(’+:)+ (p+pR):(:)l=’’-v”(q+FR)+@ ‘97’6)
where @ is given by (97.64) [see the equation following (2.62) in (Ll) and
eq. (52.1) in (L2)]. In (L2), EK = aRT4 [cf. their eqs. (49.37) and (51 .1)],
while p~ includes dissipative terms [cf. their eq. (49.43)]. In (Ll), E~ -

aRT4 and p~ =~a~T4 [cf. eqs. (2.4) and (2.14) of that reference]. In both
(Ll) and (L2) the acceleration term in (97.47) is dropped from FK.

Unfortunately, all of the simplifications just described neglect terms that
are of the same order as the viscous terms that are retained. For example,

(97.65) omits the rate of change of the radiation momentum density and
the dynamical interaction of the radiation momentum with the velocity
gradient, even though these terms are formally of the same order as the
viscous stress; it is not, therefore, a consistent equation of motion, and
(97.60) should be used instead. Similarly, (97.66) omits terms from E~, F~,
and pR, as well as a” FR, which are all formally of the same order as 0, and
this equation is not consistent at the level at which radiative dissipative
effects enter.

The important conclusion that can be drawn from the discussion above is

that all dynamical effects of radiation, including radiative viscosity, inertia
of the radiant heat flux and enthalpy density, and radiation momentum
density are correctly described by the comoving-frame radiation momen-

tum and energy equations (95.87) and (95.88), provided that all terms in
those equations are retained. Thus one can account for these dynamical
effects by solving the (full) comoving-frame equations directly, without
resol~ to the second-order diffusion approximation, which supplies analyti-

cal results valid on] y in the limit of small photon mean free paths. In
practice, it may be difficult to retain sufficient numerical accuracy to
calculate the dissipation terms with any significance at great depth, but it is
just then that the departures from adiabaticity they produce are small,

perhaps 0(v2/c2). On the other hand, in the transport regime the
comoving-frame moment equations provide a direct means of handling
radiative momentum input into, and dissipation in, the material in
radiation -dominated flows, just when these effects are large. Analytical
expressions for viscous terms can not be written in the transport regime
because they depend on the globa~ structure of the velocity field over a
photon mean free path (now comparable to a characteristic structural
length) instead of on local velocity gradients. The “viscous” effects are now
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just part of the nonlocal momentum and energy transport calculated from
the numerical sol ution of the radiation moment equations.

THE NONEQUILIBRJUM DIFFUSTON APPROXIMATJON

One of the assumptions made by equilibrium diffusion theory is that the
radiation field and the material are in thermal equilibrium, which implies
that the radiation has a Planckian distribution at the material temperature.
This assumption is unnecessarily restrictive because problems arise in
which the material is opaque, but the matter and radiation are not in
ecluilibrium, fol- example when the material energy balance is driven by
hydrodynamical processes faster than it can relax radiatively, or when the
radiation field varies too rapidly for the material to follow instantaneously.
It is therefore productive to construct a nonequilibrium diffusion theory in
which the radiation field can have an arbitrary spectral distribution and
energy density. Interesting early discussions of this approach appear in
(Cl), (C2), and (F3).*

It is most natural to formulate the theory in the Lagrangean frame, for
that is the frame in which the radiation field isotropizes and PO(VO)-
@O(vc,) when k,, -+ O. Thus, assuming isotropy in (95.83) and dropping all
terms of O(APu/lc) and higher, we have the nonequilibrium diffusion flux

FO(VO)= –[c/3x0(vc,)lVE0 (v0) (97.67)

Using this expression in (95.82) we obtain the nonequilibrium-diffusion-
limit monochromatic radiation-energy equation

~[%Yel+*{Eo(”o)-&’”oEo(”o)’}:(;)l
(97.68)

1-
=V. ~

1
VEO(VO) + KO(PO)[4WB(V0, T) – cEO(v~].

3XO(7”O)

Here we have assumed that X. and To are given by (77.7).
Integrating over all frequencies we obtain the total flux

F.= –(c/3~)VEo, (97.69)

and the nonequilibriurn radiation diffusion equation

“[: F)+’Eo%(:)l=v”(: vEo)+c(”p’~T4-K~Eo)
(97.70)

* What wc call “~C\LlilibriLlIT7diffusion>’ is callec! raciiafion heat conduction by some authors

(21, 151-J53), and “radiation diffusion” by others. What we call “nonequilibrium diffusion”
is also sometimes called “radiation diffusion>’(21., 15*156) (which can lead to confusioa) ol-
the “Ecfclington approximation” (which is imprecise because one can invoke isotropy, P = ~E,
without dropping the dF/& term, which destroys dre wavelike character of the radiation
moment equations in transparent material and forces thenl to yield a diffusior equation). We
recommend the terminology used here because it is descriptive and specific.
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an expression first derived by Castor (C3). Here z is defined by

(mVEo/jj = [vEo(vo)/xu(vo)] ‘VO, (97.71)

[cf. (82.22)], taking
necessary; ~P is the
(82.30)]

Jo

different values along different coordinate axes if
Planck mean; and KE is the absorption mean [cf.

~E = r~(’~o]Ko(Jd ~vo> (97.72)
o

where e(uo) = Eo(vo)/Eo is the radiation energy spectral profile in the

comoving frame.
Equations (97.69) and (97 .70) are extensions of first-order equilibrium

diffusion theory. One can make similar extensions of the second-order
theory (HZ); in essence one replaces a~T4 with EO in the expressions for
WR and PO.

To emphasize the similarity of (97.70) to the equilibrium cliffusion
equation (97 .7) we parametrize the total radiation energy density in terms

of a radiation temperature T~, which in general is distinct from the material
temperature T. Thus, if wc define

(97.73)

equation (97 .70) becomes

.[~($)+,a.,:g (;)I=V”C* )VTR +CLRC(KPT4– KET~)

(97.74)

We stress that T~ is only a parameter describing the total radiation energy
density, and that e(vo) need not be Planckian at TK (although it may be
useful to assume that it is—see below). In this two-temperature description
~,e nl Ust determine two variables, T and T~, hence must SOlve (97.74)

along with the material energy equation

“[%+”:(:)1” aRC(KE”rfi– KPT4j + p&. (97.75)

Discrete versions of (97.74) and (97.75) are to be solved simultaneously

for T’”+’ and THL’ at t’+’. Both equations are 1inearized around current

estimates T* and T:; for one-dimensional ffOWS me Obtains a block
tridiagonal system with 2 x 2 blocks. This system is solved by Gaussian
elimination, and the linearization procedure is iterated to convergence.

Thus far we have assumed that the coefficients 2 and KE are given. Tn
grey material, KP = KE = K and ~ = K + cr. For Ilongl-ey nlatel”ial the SilnpleSt

approximation is to set, by analogy with equilibrium diffusion, ~ = XR and

KE = Kp, with al] opacities evaluated at the material kMperatUJ-e. This
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approach assumes that the radiation field is not strongly out of equilibrium
with the material. A simple alternative is to take the two-temperature
description literally, and assume that the spectral distribution of EO(VO) is

actually B (uO, T~). Then, following (F3], we can define the two-temperature
mean opacities

K.E(T’TIJ=J K.(voT)~(u., TJduJ(aRcT#4~), (97.’76]
o

and

This approach accounts approximately for the nonequilibrium character of
the radiation field, and reduces to standard equilibrium diffusion when
T~ = T.

To improve on the schemes described above we must determine the
actual spectrum e(uo) by solving the monochromatic diffusion equation
(97.68). This equation is complicated mathematically by the frequency

derivative, which accounts for the varying Doppler shifts experienced by
photons as they travel through moving material. Nonetheless, this term has

been written in conservative form, and vanishes when (97.68) is integrated
over frequency. One might therefore argue that we could simply drop the
frequency derivative, knowing that the correct total energy density would
still be obtained. The fallacy of this argument is revealed by a thought
experiment devised by Buchler (B3).

Consider an adiabatic enclosure containing an extremely opaque,
homogeneous medi urn (which implies F= O), whose sole opacity is Thom-
son scattering (K = O). Then, without the frequency derivative, (97.68)
reduces to

Dln Eo(vJ 4Dln p=o

Dt 3Dt ’
(97.78)

which predicts that

Eo(vo) ~ V-413. (97.79)

This result is correct for the total energy density in an adiabatic enclosure
[cf. (69.71)], but not for the monochromatic energy density. Indeed, the fact
that E ~ V“ 4’3 in equilibrium implies that T w V–’ ‘3, so that the spectral
distribution B (vo, T) must change when the enclosure contracts or ex-
pands. We will obtain the correct radiation energy spectral profile only if
we retain the frequency derivative in (97.68). This term accounts for the
progressive redshift (blueshift) of radiation undergoing adiabatic expansion
(compression). Moreover, in the nonequilibrium case it allows redistribw
tion of radiation over frequency to produce a non-l?lanckian spectrum,
which may be of critical importance, for example when energy cascades
from the spectral peak into a high-energy tail in material undergoing
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compression. In short, the (d/b) term must be retained in order to obtain
the correct spectral distribution e(vO) (which is the whole point of doing a
frequency-dependent calculation !).

Introducing frequency groups (or ODF pickets) as in $82, in one-
dimensional flows we must SOhW G diffusion equations

simultaneously with

De
~+

where

the material energy equation

J

“.. ,
Eg = EO(VO) dvo. (97.82)

u,

Here KP,g is the group Planck mean defined by (82.42), and ~, and 2, are,
respectively, appropriate direct and harmonic averages of the opacity

within the group.

There are several possible choices for =X and ~~ (cf. $82). For example,

one might choose <E = Kp, g (T) and Xg = xR,,(T) computed at the material
temperature T. Or, generalizing (97.76) and (97.77), one can introduce
two- temperature group means (F3) and set :~ = KP.g (T, TR) and j?~=
XR(T, T~) where

J

“
,.,. ,

KP, g (T’, ‘TR) = Ko(vo, T) B(vo> TR) ~vo/% (97.83)
u.

and

[J

~’g+,
xR,g (T> TR) =

‘ - P) d“,/J;+’(%)T<d”ol-’,>, Xo(vo, f) ~T -rR .
(97.84)

In either case Kp,g in the emission term remains a function of T only.

Another possibility is to use an ODF, in which case k, = Kmicke,(rf) and

~,= xp,c~e,(T), which are constants within each picket; we then also use
Kp,cket for Kp,g in the emission term. For expository ease we will use the

generic notation & and x~ to represent any of the choices just described.
The term A~( VEV) in (97.80) denotes the integral of d[voEo(vo)]/dvo over

group g. We use upstream differencing, remembering that photons are
redshifted (blueshifted) if the material expands (is compressed). hence for
expansion we couple group g to g + 1. and write

A&JEW) = (vE.)~+l –(vE.)8 = ~g.-(3/2)(Eg* ljAvg-,-l)– vg+(l/2)(EJAvJ2

(97.85a)
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and for compression we couple group g to group g – 1:

Ag(vEu) = LJg+(l/2)(Eg/AVg)– ~g-(1/2j(Eg- ~/Avg-l). (97.85b)

Here vK_(l~2)=$(v~ + V,yl), and the divisor Avg = (V8+.1– v~) enters to con-
vert E~, an integral over the frequency band, back to a spectral density EU.

When the discrete form of (97.80) is summed over all groups, the A(~Euj
terms telescope, and their sum vanishes identically.

The rnultigroup diffusion equations and the material energy equation are
discretized in space and time in the usual way. lf one uses two-temperature
opacities, it is convenient to adjoin the definition

at each depth point. Assuming that all material properties are f(p, T) or

f(P, T, T~), and that p“’+’ is known from the explicit hydrodynamics, the

goal is to determine the solution vectors

~~ ‘(b> . ..> Ec> T, ‘R):-’-’> (d=l,..., D), (97.87)

of the nonlinear system.
Consider first a direct solution of the problem. We linearize all equations

around current values ~~; material properties are linearized in terms of i5T

(and, if appropriate, 6T~). The resulting linear system in
(8E1, . . . . i3E~, ST, i5T~) is block tridiagonal, and can be solved using the
Feautrier technique described in $88 and iterated to convergence. The
total computational effort scales as cD(G + 2)3; the solution is thus costly
for a large number of frequency groups, and an alternative procedure may
be preferable.

An efficient iteration scheme is provided by the multifrequency/grey

method, which was developed in the VERA code [see (F4) and $$98 and
99]. Here we break the solution into two parts, each of which can be done
relatively cheaply. In the first step, we assume that we know the radiation
energy spectral profile e~s E~/EO. We then compute

and use these means in the integrated diffusion equation (97.74) and the
material energy equation (97.75). We linearize these equations (holding
the ratios k~ and k~ fixed), solve for 8T and 6“r~, and update T and TR at
all depths; this step requires only CD(2)3 operations. In the second step, we
assume that we know the run of T and ‘rR. We can then solve the

multigroup equations (97.80) for all EN’s using an “inner iteration” proce-

dure. To avoid coupling among the equations, we put the A,(vEU) terms on
the right-hand side along with the source term B~. To start, we use the old
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e~ scaled to the current value of EO to estimate the Ag‘s. We then have G
independent tridiagonal systems of order D, which can be solved in parallel
with a computational effort that scales as cDG. We then update the Ag’s on
the right-hand side, and iterate to convergence, thus determining e~. We
then return to the first step to compute more accurate values of T and TR,
and carry this “outer iteration” to convergence.

The lmultifrequency /grey method is efficient because in the first step even
a rough estimate of the spectral distribution yields reasonable values for K~
and ~, hence for T and TK. Similarly, in the second step the computed
spectral distribution will be reasonably accurate even if T and T~ (hence e
and EO) contain local errors.

Before leaving nonequilibrium diffusion theory, it is worthwhile to criti-
que earlier formulations [e.g., (C2) and (I?3)] which, unfortunately, are not
physically consistent. In essence, these analyses start from the lab-frame
equations (93.10) and (93.11), assume that Pii = iE8’i, and drop all O(dC)

terms on the right-hand side, obtaining an energy equation of the form

(d~/dt) = K(47f~ – C@ + V - [(c/3 x)VE]. (97.9oj

The problem is that (97.90) is not correct in either the Lagrangean or
Eulerian frame. Although the right-hand side of (97.90) looks like the
right-hand side of the Lagrangean equation (97.70) (if we ignore the
distinction between E and EO), (97.90) is nevertheless not Lagrangean
because on the left-hand side the distinction between (dE/EIt) and
p[D(E/p)/Dt] is not made, and the rate of work done by radiation

pressure, +pEID(l/p)/Dt], is missing. On the other hand (97.90) is not a
correct Eulerian equation because on comparing with (93.10) we see that
the right-hand side lacks a term c–’ XV “F eclual to the rate of work done
by radiation forces on the material, and furthermore that in the flux
divergence the comoving-frame flux has been used instead of the lab-frame
flLLx,thus omitting the dominant term ~EOv that discriminates F (Eulerian)
from FC1(Lagrangean).

Indeed, the derivation of the correct Eulerian nonequ ilibrium diffusion
equation is a bit tricky. Not only must we discriminate between F and FO,
but we also must be careful how we relate the inertial-frame energy density
E to the parameter T~. If we naively write E =&~T& theradiation-energy
and gas-energy equations contain extra terms and do not reduce correctly
to their Lagrangean counterparts (although the result for the radiating
fluid—radiation plus material-is correct). Instead, we must define T~ by

(97.73); then (91.16) implies that

E = a~T~– (8a~T1/3cX~)v “VTR. (97.91)

The second term in (97.91) is important only when we compute the net
absorption-emission. Using (97.91) and (93.14) in (93.10), we find that the
Eulerian nonequi}ibriurn-dif fusion radiation energy equation correct to
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O(v/c) is

(aRT~),, = a~C(KPT4- K.T~) + V. [(4a~cT~/3X~)VT~-~a,lT&]

+$a~T~v . VTR,
(97.92)

which reduces to the more revealing form

which is identical to (97.74). Similarly, using (97.92) in (94.20) we find that
the Eu]erian gas-energy equation, correct to O(v/c), in the nonequilibri urn
diffusion limit is

(pe),t +V o(’ev)+ pV . v= aRc(K~T~– K,,T4)+pe, (97.94)

which is identical to (97.75).
In summary, (97.90) is unsatisfactory because either a term equal to four

times the radiation work term is omitted if it is used as a Lagrangean
equation, or the wrong flLLXis computed and a term equal to the rate of
work done by radiation is omitlecf if it is used as an Eulerian equation.

TliE PROBLEM OF FLUX L1,vIITJNG IN DIFFUS1ON THEORY

Inasmuch as the basic assumption of difision theory is that A,,<< 1, there is
no reason to expect the time-dependent radiation diffusion equation to
yield accurate results in transparent media. Nevertheless, because of its
simplicity, diffusion theory is often used throughout the flow, in both

opaque and transparent regions; typically one then finds (Bl), (C2) too
large an energy transport in the optically thin material. Moreover, cliffusion
theory usually gives a serious overestimate of the energy deposited by a
radiation front penetrating into cold material, particularly at early times.
Nonequil ibrium diffusion generally gives better results than ecluilibri urn

diffusion, but both are significantly in error.
In the most extreme cases, the flLLX out of an optically thin zone

predicted by diffusion theory may exceed the energy density times the
velocity of light,

lF~ifiusiool> cE, (97.95)

implying that the effect ive speed of energy propagation,

V~=)F1/E = \4cADVE1/E - c(AP/31), (97.96)

exceeds the velocity of light.
Both of these results are physically absurd, and clearly reflect a break-

down of the theory. The root of the problem is that the diffusion equation
tacitly assumes that photons always travel a distance of the order of An,
even if AD exceeds the free-flight distance c At corresponding to the
timestep At. To follow a radiation front we choose At - Ax/c, hence we can
expect diffusion theory to break down in regions where A. > Ax. The
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problem should come as no surprise, for it is well known that the linear

diffusion equation has a fomlally infinitesignal speed (M16, 862-865),
whereas the signal speed for transport of radiation in transparent matel-ial
is limited to the speed of light ($81).

One way to overcome the problem is to use a jlux limiter, first suggested
by J. R. Wilson (unpublished); see also (W4). The idea is to alter the
difision-theory formula for the flux in such a way as to yield the standard
result in the high-opacity limit, while simulating free streaming in transpar-
ent regions. For example, we might use an expression of the form

F= –c VE/[(3/Ao)+ lv~ll~l, (97.97)

which yields F~ifi,,~iO,,when LP/l <<1, and limits to

F=cEn (97.98)

in transparent regions; here n is a unit vector opposite to VE (i.e., down
the gradient). Equation (97 .97) is only illustrative; numerous other expres-
sions have been proposed (K2), (L3), (L4], the one most often used in
astrophysics appearing in (Al).

While flux-limited diffusion has been widely used, this approach provides
only an ad hoc ‘‘fixup” of generally unknown accuracy; it gives the correct
limits, and has qualitatively correct behavior in between, but it could be

quantitatively wrong (perhaps seriously) in the intermediate regime. Fu nda-
mentally the flux-1 imiting problem results from dropping the time deriva-
tive from the radiation momentum equation, which precludes recovery of
the wave-equation character of the coupled radiation energy and momen-
tum actuations in the optically thin limit. Indeed, dimensional analysis

suggests that on a radiation-flow time scale c–2(tW/dt) is O(kP/ 1) relative to
xF/c, and will dominate the solution for a radiation front in transparent
material.

If we retain the time derivative in the radiation momentum equation, we
can, in fact, recover the wave equation in transparent material, and the

solution is automatically y flux 1irnited (M1O]. We examine this assertion
briefly here to motivate the developments of $$98 and 99. To make the
point while avoiding unnecessary complications, we consider time-
dependent transport in planar, static material. The radiation energy and
lmomenturn equations are

(d~/dt) + (dF/dz) = K(4~~ - c~) (97.99)

and

C-2@~/?t) + [d(fE)/dz] = ‘(x/C) ~, (97.100)

where f is the variable Eddington factor. We first replace the time
derivative in (97.100) by a finite difference, while leaving the spatial
derivative in continuous form; for stability we use a fully implicit scheme,
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which gives

F – –:*,.l,1+[ _
a~+l E’L+l)

+ y ,t, \ Fn, (97.101)
y+x az y+x

where

Y=~/C At. (97.102)

Equation (97. 101) provides an analytical expression for the flux, which can
be used in (97.99); but let us first examine its physical content.

Define A such that

~-’=vtx=(c At) -l+ A; I=*:l+A-l ~. (97.103)

Clearly the effective mean free path A is the harmonic mean of the optical
mean free path Lo and the free-flight distance A, through which a photon
can travel in a timestep At. We then rewrite (97.101) as

~n-1-l = _c~ “-’[d(f”+’E’’+-’dZ]+(A(At)FnFn. (97.104)

In opaque material x j> 1, A.<< A,, and A ~ Ap, while f ~ ~. Equation
(97.104j then reduces to the standard diflision result

p-,- I —— “-”’(c3Er’+’/dz).—$cA~ (97.105)

In transparent material x + O, A. -~, hence A ~ A,, which shows that

(97.1 03) correctly limits the effective mean free path to the photon flight
distance instead of allowing it to become arbitrarily large. In this regime
f+ 1, F+ cE, and (97.104) reduces to

F-” = F“ – A,(W+’/(3z), (97.106)

which makes the physically correct statement that in the optically thin limit
a change in the local value of the flux results from information communi-
cated about the flux gradient within a photon free-flight distance A,.

If we now replace the time derivative in the energy equation with a
backwards time difference and eliminate the flLLXvia (97.104), we obtain
the combined moment equation

[
(y+ K’’+’)E”+’-+ A“+’ ~~f’’;f”+’)]

()47r—— ‘K
()

: ; (A’L-’-’F).“+’ B’’+l~ YE”- —c

(97.107)

The mathematical structure of (97.107) is similar to the non equilibrium
cliffusion equation (97.70); its physical content, however, is much larger. In
the limit of high opacity and/or long limesteps, (K/y)>> 1, and (97.1 07)
reduces to

--( —)= K”-’-’[EHB”-IB”’-’I ‘97108)
1 d An.,., dE”+l

qdz “ tiZ
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which is a quasi-static nonequilibrium diffusion equation at the advanced
time level. In the limit of low opacity and/or short timesteps, (K/y)<< 1,

and, setting ~ = 1, we find

~~-~1 _(c A~)2(~2E+-1/~z2) = ~n – (ye)-l(-dFn/~z) = ‘2~~ _~~-~,

(97.109)

where the second equality follows from a backward Euler representation of

(97.99) at t“ for K = O. Regrouping terms we have

C’(d’E”+’/dZ’) = (E”+’ –2E’t +E’’-1At2=2= (d2E/dt2)”, (97.1 10)

which is an approximation to the wave equation; the miscentering of the
time derivative results from use of fully implicit difference formulae in both
moment equations. If we were to use f = ~ in the transparent limit we
would still obtain the wave equation, but with a propagation speed of only

c/wb instead of c, a result that also follows rigorously from (97.99) and
(97.1 00) when K =x= O and f= $. Thus it is essential to use accurate
Eddington factors in order to obtain the correct propagation speed.

Jn summary, if we solve the full time-dependent radiation moment
equations we recover both the diffusion and wave limits, and avoid the
problem of fltlx limiting, which is a mere artifact of the approximations
inherent in the cliffusion equation. Furthermore, we must use accurate
Eddington factors if we are to recover the correct streaming limit. Let us
therefore now consider how to solve the full radiation transport problem in
moving media.

98. Transport Solution in the Comoving Frame

ln this section we discuss methods for solving the Lagrangean equations of
radiation hydrodynamics in the transport regime. Because the complete set
of equations is complicated, we tailor the discussion to situations of
astrophysical interest. As before we consider only one-dimensional spheri-
cally symmetric flows of a single material. We will emphasize fluid-flow
time scales, but write equations that generally behave correctly on
radiation-flow time scales as well. To close the system of moment equa-
tions we use variable Eddi ngton factors; these are to be evaluated in a
subsidiary angle-frequency-dependent formal solution. Similarly, the spec-

tral distributions required to form mean absorption coefficients for the
radiation energy and momentum equations are to be obtained from a
subsidiary solution of multigroup equations.

RADIATTON ENERGY ANO MO MENrUM EQUATIOh S

For economy of notation we omit the affix “0” with the understanding that

in this section all physical variables are measured in the comoving frame. As
discussed in $95, we retain all O(v/c) terms in the radiation energy
equation; in the radiation momentum equation we drop thelm all except the
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(fl/Dt) term, which is kept to assure flux limiting, as discussed in $97. Thus
the radiation equations to be solved are the monochromatic radiation
energ] equation

;F) [ ‘(’)
+ f,,~ ; - (3f1j - 1) :] E,, -: {[f,>: (:) - (3fl - 1) :]VEV}

= s (4m-Br,- CEU)- ‘(4:~FV) , (98.1.)
P r

and the monochromatic radiation momentum equation

(98.2)

As in

which

$83 we define the sphericity factor

J
In qv = r [(3fu - 1)/fur’] ~~’, (98.3)

,.

allows us to rewrite (98.2) as

1 DF. & 4rrr2p dti,q~.) _ x.F.

C2 Dt q“ FM, c-
(98.4)

Integrating (98. 1) over frequency we obtain the radiation energy equa-

tion

(98.5)
Here

J
f= ‘fvev dv (98.6)

o
and

J

.
KE = Kve Udv, (98.7)

o

where the radiation energy spectral p~ofile e,, G E,,/E is presumed known.

Similarly, integrating (98.2) over frequency we obtain the radiation

moment urn equation

1

C2

where now

and

Again the radiation flux

(98.8)

I
L,, q = ‘[(af - 1)/fr’] dr’, (98.9)

,C

X/c rX. {vdv. (98.10)
o

spectral profile ;. = FJF is assumed known

.-...
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We can use (98.5) and (98.8) as a coupled system on an interleaved grid
with E defined at cell centers and F defined on cell boundaries. Alterna-
tively we can use (98.8) to eliminate F from the radiation energy equation,
thereby producing a combined moment equation for E. To obtain such an
equation we replace the time derivative in (98.8) by a finite difference
while leaving the spatial operator in continuous form. For stability we use a

backwards difference, obtain ing

(98.11)

where A is the effective mean free path defined in (97.103), and k, = c At.
In (98.11), all variables are evaluated at a time At beyond some arbitrary
reference time t“; notice that as At ~ O, A -+ O, (A/A,) -+ 1, and F+ F.

Substituting (98. 11) into (98 .5) we have

%3+[D (1)f=; –(qf –1) ~]E =; (4flKP~ – CK.E)

+
2 “Tp’L%W&[’fi’2(W- ‘98”12)dM, [

If we ignore the time dependence of the radiation momentum equation
(equivalent to ]ettillg At + cc, A -+ Al,) we obtain the combined moment

equation

:(3+[f:(;)-(3f-l@ (98.13)

d (4mr2)’cp d(fqE)

[
= ~ (47rKp~ – CKE@ += —

r 1qxF ~Mr ‘

which was first derived by Castor (C3) (who made the additional approxi-
mations that KE = Kp and XF = XK). This equation can be used in a variety
of astrophysical problems [see e.g., (K3)] but (98.12) is preferable if we
wish to model phenomena on a radiation-flow tilme scale. If we set f=$
and q ~ 1 in (98.13) we recover the non equilibrium diffusion equation
(97.70) or (97.74); if, instead, we set (D/Dt) = O and v = O, we recover
(83.65), the combined momenl equation for a static medium.

FLUID EQUA-( fONS

The radiation equations are to be solved simultaneously with the fluid
momentum equation

(~v/~t) = –(GMr/r2) - 4mr2[d(p + Q)/dM,] + (fi/Pc) F, (98.1 4a)

or

(Du/Dt)= -(GM,/r2) -4wr2{[d(p + Q)/dM,]+ (1/q) [~VqE)/~M,l},
(98.14b)

.,,.,
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and the material energy equation

(Dd~t) + (p + f2)[D(l./p)/Dt]= E + (cK~E ‘47TKP73]/~ = &

(98.15)

Here Q is the pseudoviscous pressure, and s is the rate of thermonuclear
energy generation; all material properties are assumed to be known
functions of p and T’.

COMPUTATIONAL STRATEGY

The problem is to solve (98.14) and (98.1.5) coupled to either (98.5) and

(98.8), or to (98.12), as a function of time. As an example we outline the
computational procedure in a Lagrangean coordinate system; but we
remind the reader that any coordinate grid may be used, with adaptive-
mesh schemes (T3), (W3) being the preferred choice for many problems.

In an explicit Lagrangean scheme (cf. $59) we may use either (98.14a) or
(98.14b) to advance v from t“-f’/2) to t“+(1121because p, Q, E, F, f, and q

are all known at tn. Equation (98. 14a) is essentially exact, whereas
(98. 14b) omits both time- and velocity-dependent terms in accordance with
the analysis of $96. The omitted terms are at tmost O(v/c), hence their
effect on energy balance is al most 0(u2/c2).

Having obtained V’L--(”z)we update radii and densities to t“+’.We must

then solve (98.14) simultaneously with either (98.12) for T and E, or with
(98.5) and (98.8) for T, E, and F at t’”+’.Here we assume that f, q, KE, and

xF are known at t’”-’3which implies that we are given fv, q,,, e,,,, and ;V at
t ‘+]. But of course these quantities depend on T“-” and E“-’-’, and the
whole set must be determined self-consistently.

The computationally most economical method proceeds in three steps,

which are iterated to consistency. (1) Given estimates of the geometric
factors and spectral profiles we solve the coupled material energy and
radiation moment equations for T ‘1+1, E“+’, and F’-E’. (2) Given these
values of T and E we evaluate the source-sink terms in the angle-

frequency-dependent transfer equation and perform a formal soJution for

f. and q,,. Because the Eddington factor is only a ratio of radiation
moments and is primarily geometry dependent, reasonable distributions of T
and E yield relatively accurate values of fb, and qv. (3) Using the current
estimates of T“+’, f,,, and q,,, we solve the monochromatic moment
equations to obtain new estimates of the spectral profiles e,, and $U. We
then update the frequency-integrated quantities f and q, re-evaluate x~ and

XF, and return to step (I).
Aside from the additional step of updating Eddington factors, the above

procedure is identical to the multifrequency/grey method of solvi ng the
multigroup cliffusion equation. Indeed, if the Eddington factors can be
determined reasonably cheaply (perhaps being updated only every few
timesteps), little more effort is needed to solve the full transport equations
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than the corresponding diffusion equations. Inasmuch as a transport solu-
tion is inherently much more accurate in transparent regions near bound-
aries, it may be false economy to use a diffusion calculation at al].

DIFFERENCE EQUATIONS

An explicit difference equation for the fluid momentum equation is

or

–4n(r,~)2{p;+(l/2) – P~-(1/2) + Qp.Zy13)– Q;::r”$) (98.16b)

+IY+-(VML(U2) E:+(L/z) –f?-(l/z)q:-(i/z) ~?-(]/2)]/q;}/A~;.

Here i =2, . . . . 1, and we have dropped the subscript “F” on X. In tbe case
of unequal timesteps, one may wish to center both pi7(l/2) and r~ at t“”-k, as
in (59.64) and (59.87). The pseudoviscous pressure Q is computed accord-
ing to the prescriptions in $59.

At the lower boundary we assume that u,= f(t), a known fir nction of
time; for example VI =0 at the center of a star or at tbe fixed inner
boundary of a pulsating envelope. At the upper boundary we assume that
the material and pseudoviscous pressures are zero; we further assume that
any material outside of r[.l., is optically thin so that radiation cluantities are
invariant beyond that point. We then have

or

Here A Ml+l E+ AMr+.(ljZl + MWr7(31z), where AMI+(q~z) represents any mass
assumed to lie outside of rl+j, and ,y”r_l = EL+l/Er+(, /21 is a geometrical
factor determined from the formal solution [cf. (83.44)].

Having advanced 0V-(1’2) to V;’--(”z) we update shell positions

and densities
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The material energy equation is represented as

where $s(3~l, and

To (98.20) we must adjoin difference-equation representations of the
radiation energy and molnentum equations. We will use a fully implicit
(backward Euler) scheme for both equations. This choice has several
advantages. (1) It is physically sensible on fluid-flow time scales, because
when c At }>Ar, the radiation field is essentially quasistatic at the advanced
time level. Indeed, experience shows (M8) that the fully implicit scheme
should be used even on radiation-flow time scales because time-centered
differencing tends to produce large, unphysical oscillations of the solution.

(2) Jt maximizes stability; a von Neulmann local stability analysis shows that
the fully implicit equations are unconditionally stable. (3) It is algebraically

simple; other choices lead to more complex equations (M8), (M1O).
The fully imp] icit representation of the radiation momentum equation

(98.8) is
~:+1 =_~ntl

l,i+(i/~E~~>{/2) + ~~~\112)~?:(~/2) + ~T-+ ‘~~, (i =2 1),>. ...

(i=2,..., I), (98.22)

where, writing y = l/c At,

(I; +L= ‘Y/(’y+x?+’) (98.23)
and

/3;i&/2) ‘4~~(r:L’-1)2p? +]f:L~/z)q;&i/z)/q:+ ‘(Y + x:+’) AM,.
(98.24)

Here pp+’ and X:+l are suitable averages across the interface Ti.For pi it is
reasonable to adopt the mass-weighted average

pi ~[pi–([lz) A~i-(1/2) +pi-,-(1/2) A~i+(l /2)lj[A~i–((/2,+ A~,+( 1/3,1.
(98.25)

Similarly, to obtain the correct optical-depth increment between cell
centers one might adopt

(x/p)i~ [(xlp)i-(1/2)AMi-(1/2)~ (xip)i-(L/2,AMi+(l/2)]i[AMi-(1/2)+ A~i--(l/2)l.
(98.26)

For certain classes of problems, however, (98.26) is unsatisfactory. For
example, in stellar pu(sation calculations the temperature sensitivity of the
opacity is so steep (x x T 12, that there can be enormous (one or two orders
of magnitude) jumps in the opacity between successive zones. in this case,
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Christy has shown (C4) [see also (S5)] that reasonably accurate flLtx
transport is obtained in the diffusion limit by using the energy-weighted
harmonic average

~p,x),~{[Ti-(llz1]4(~/X) i-(llzl + [Ti+(l,Z)]4(P/’X)L+(~)~)}
(98.27)

{[~i-(,/2)]4+[Ti+(i/2)]4}

For an inner boundary condition we fix the incident flux. If rl is the
center of a star, FIG O. If rl is the radius of a static core inside a dynamical
envelope, we set FL = L, 14rrr? where L, is assumed given. To obtain an
outer boundary condition we apply (98.22) on the half-shell from r[..(Ji2) to
R1+.I; then

where G and @ are defined by (98.23) and (98.24) with AMi replaced by
~AMr+{l,z). Invoking a geometrical closure of the fOrm

~,here A is given by the formal solution, as in (83.45), we find

The fully implicit representation of the radiation energy equation (98.8)

is

Equations (98.22), (98.30), and (98.33) are a coupled system for F:+’,
(i=l, . . . . 1+1), and EV1~,z,, (i= 1, . . . . 1). Alternatively we can use
(98.22) and (98.30) in (98.33) to eliminate the Fi’s analytically, obtaining a
finite difference representation of the combined moment equation (98.1 2).
Thus for interior shells (i =2, . . . . ~– 1) we have
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For the innermost shell (i = 1) we have

(E;~]/p:~’) +u~~l[(l/&A1) – (1 /Pl,z)]

– (3.fY~;’– I)(v/r).l,n+(l/2) ~t. +-(112),p:;l}~:;il

= (E:,z/p;,2) + At “+( “2){(4~K;,~}2B;fi’ – CK:Lj2ESA1)/P;X’
(98.35)

+ [4m(r~+l)2(~~,~~zE~jj’ – fl~,~~2E~~1 – CJ~+]F~) + Ll]/AM3/2},

and for the outermost shell (i = 1),

[m;il/2)/P?:(’l/2)1 +uf::/1/2){[vP;:4 /2)1 – [vP?+.(1/2jl}

– [3fy1~l,,, – l](v/r)V~f}/~) Atn+(]z)/p~.~j112JlE~l~\j21

= [m-(1/2) /P?+(,,2)l

+At ‘(”2’ [[4TK:,:;(,,2,B::7;,2, —CK:j+E(~/~)E~<}/2)]/p::/l/2j (98.36)

– 4m{(r~J-/)2[~~J~,1 +.(1,2)E~~/1,2) + afj!j Fj+l]

+ (r; )2[@j;~(1,2)E~&a – (3~J!( ~,2#Z~I&2) – a f+’ F“]}/AA41+(1,2J].

To evaluate the cell-centered quantity (vI r)i.,.c,,21 in (98.33) to (98.36) we
define rL~(112jas in (83.86), whence by differentiation with respect to time
we have

(dr),+,lj2~ = (r~vt + r?+ Lot+ll/(r~ + r~.,.l). (98.37)

For calculations on a nuclear-evolutionary or an acoustic time scale,
y Ar <<1 and y~~ <<1, hence we can usually set y = O in the radiation

momentum equation. For phenomena on much shorter time scales (e.g.,
accretion onto compact objects), y Ar may approach unity, and yAP may
greatly exceed unity in transparent regions of the flow; the time derivative
in the radiation momentum equation must then be kept.

Equations (98.22), (98.30), and (98.33), plus the material energy equa-
tion (98.20) can be assembled into a system of nonlinear equations for the
unknowns T~~~},2), E~+~l,2,, and F~+~<, (i= 1, . . . . 1). We linearize the

*system around trial estimates [T&ll*), Ei+(l)zJ, Ffi.1] to obtain a block
tridiagonal system of (3 x 3) matrices coupling a set of solution vectors

~~i = [8 Ti+(l,2), 8Ei+(l,2), 8~i+t], (i = 1, . . . . 1); the linearized system is sol-
ved by Gaussian elimination and iterated to consistency. In this procedure
we might write KE = k~KP and ~- = kFXR, and linearize Kp and XR as
functions of T, assuming that the ratios k~ and kF determined in the
multi group step remain fixed. Alternatively we might calculate (tIK~/dT)

from (t)Kg/d T) in each group weighted by the spectral profile e., and
similarly for (dx~/dT).

If the combined moment equation is used instead of the individual
radiation energy and momentum equations, the unknowns are reduced to
(T, E);!~~,2), (i=l, ...,1).The F+” s can be calculated from the E~~(~,2)’s

using (98.22) and (98.30). The method of solution is the same, but the
matrices are now only (2 x 2). The advantage of the smaller matrix size
may, however, be offset by the more complicated structure of the
linearized equations.
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If the hydrodynamic equations are coupled to the radiation equations in
implicit, rather than explicit, fc)rm, we must determine simultaneously r:+l,

v:+’, d-;~:/2J Y
T;.&l, E;~[~,z), and F~:~, ,2). When linearized, this set of

equations produces a block tridiagonal system of (6x 6) matrices coupling

solutlon vectors ~+i = [~ri–l, 8Vi+l, 8PL.}(1 /2], 8T,+(I,2), 8E,+.(1,2), 8F,+,], (i =
1, . . . . 1). The higher cost of solving this larger system at each timestep
may be offset by having to take many fewer timesteps because we no
longer need to observe the Courant condition imposed on the explicit
scheme.

ENERGY CONS I3RVATION

Equation (96. 15) is an expression of total energy conservation for
radiating fluid. Integrating over mass we have

a

D

-1(

E

)

GM,
e+ —+*v2– —

J
dM, +4rrr~+lvc+lP1+1 + L,-~ – LI = &dM,.

Dt P r
(98.38)

Here, for simplicity, we have assumed that the inner boundary is fixed

(v, - O), and that the gas and pseudoviscous pressure vanish at the outer
boundary. Introducing discretized variables, and replacing integrals over
mass and time by sums, we olbtain the total energy conservation law

where

k=O

(98.41)

and

The difference equations do not explicitly guarantee (98.39). Instead, we
evaluate i%”-’-’after each integration step, and use its constancy as a check

on the quality of the solution.

FORMAJ. SOLUTJO,N

The Eddington factors needed in the radiation energy and momentum
equations are obtained from a formal solution of the angle-frequency-
dependent transfer equation using current estimates of source-sink terms.

. .
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To obtain a solution accurate to O(v/c), we would need to solve (95.17) or

(95 .80), which would be dificult because these are partial differential
equations in four independent variables, hence costly to solve [cf. (M4),
(M12)]. We thus seek a simpler procedure.

The simplest approach is to drop both (D/Dt) and all velocity-dependent

terms from the transfer equation. We then solve the static transfer problem
along straight rays, as in 383, using the instantaneous positions of mass
shells and current values of all material properties. We thus obtain a
snapshot of the radiation field, from which we can calculate 13u and PV,
hence ~U and q,,, at all depths and frequencies. For some problems it may
even be possible to ignore curvature effects. For example, in a pulsating
star the radiation field is anisotropic only in the atmosphere, which is

usual] y so thin compared to a stellar raclius that it can be assumed to be
plane parallel; curvature effects become important deeper in the envelope
(a significant fraction of the radius in), but here we can simply set fV-$.

Intuitively one expects static snapshots to be adecluate for most as-

trophysical applications because the ratio fv should vary less rapidly than
the individual values of EU and Pu. On the other hand, this approach is
Iikely to be inadequate for flows that contain radiation fronts, that evolve

on time scales of the same order as tR, or that are transparent over such
enormous distances that retardation effects are important (e. g., the cosmic
expansion). Here we must at least retain information about the time
variation of the radiation field.

For the purpose of computing Eddington factors we therefore propose a

nzodel Lagmngean transfer equation that (1) accounts for time dependence,
and (2) is consistent with the radiation energy and momentum equations,

but (3) omits inessential complications arising from ray curvature and
Doppler shifts. We obtain such an equation by rewriting (95.80) as

()pD [V Ellt,+(1 – p’) dIv—— — +4rrr2p~ — ——
cDrp aM, r ap

(98.43)

and then dropping all of the terms in the braces which (1) are only O(v/C),
and (2) vanish identically when integrated over angle and frequency. The
remaining terms describe time-dependent transfer along straight rays, and
include two velocity-dependent terms that account for the rate of work
done by radiation pressure.

Forming symmetric and ant asymmetric averages of (98.43) for *M we
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have

--()
PDiv ah,, ~(1 –LL.2) dh.

– +4rrr2pp — —
[

v2Dhrp.

cDt p dM, r
fi=wu– xu+(l–3&7-

1Dt ““

(98.44)
and

--( )p~ h,, dj,, +(1 – P,z) t)j,,
— + 47rr2p~ — ————

‘[

~2Dlnp

cDt p dMr r 1XU+(l–3P2); –TT h,,.
dp

(98.45)

We drop the velocity-dependent terms in (98.45), which are never larger
than O(v/c) (cf. $95), and use

1 DhV djV +(1 - p,’) EJju——+ 4rrr2pp>— — ~ = –Xuh,,.
c Dt ~M, r

(98.46)

In (98.44) to (98.46) we regard j and h as functions of (M,, t; ~, v).
When (98.44) is integrated over angle and frequency we recover the

Lagrangean radiation energy equation (98.5); similarly (98.46) yields the
Lagrangean radiation momentum equation (98.8). These equations thus
meet all the desiderata stated above.

One approach to solving these equations is to rewrite them along tangent
rays through cell centers, as in 583. Then

and

~ Dh,, dj
—+~= –Xvht,

C Dt as
(98.48)

The computational effort to solve (98.47) and (98.48) for 1 shells and G

groups scales as C12G. A complication with this method is that the angles

{PW} at which the tangent rays intersect mass shells change over At “-’-(”2’
because the shells move. To form time differences we need

j“ [A4+(tjz), LL!-;t\/2),.t, ,, ~,,2,, ~~+(l,~,m, v,]. In principle onev~], not j“[lvf..
should interpolate j and h as functions of angle al t“. However if the

motion of the shells is small over At’’-+~2),), (o/c <<1), the interpolation can

be ignored, the resulting error being of the same order as made by
neglecting the O(,o/c) terms dropped in (98.44) and (98.46). The problem
does not arise in planar geometry, where motions of the mass zones do nof
affect the direction of rays when aberration is neglected.

The alternative is to r-ewrite (98.44) and (98.46) in conservative form,

()pDj.—— – + 4rrpp & (rzhv)+~~ [(1 - ~z)h,,,]
cDtp r

[ 1

(98.49j
~2D1np

= T,, — XU+(l–3W2)~–~~ JV
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and

K Dhv
–—+%ppz -& (r’jI,) +

(pZ-l)j 3 a
— u +~~ [P(w’ - l)j,,l = -xvwk

C Dt r r

(98.50)

and then use a discrete representation on a radial mesh {ri}, angle mesh

{~~t}, and frequency mesh {v,}, as in $83. The computational effort
required to solve these equations for 1 shells, A4 angles, and G groups
scales as CIM3 G.

Before considering the multigroup step it is worth noting that the
comoving-frame transfer problem for spectral lines is rather different. Here
Doppler shifts dominate all other O(u/c) terms because the radiation field
in a line changes lmarkedl y over a Doppler width AVD. Dimensional
analysis shows that the (d/Jv) term is effectively amplified to O(v/vtl,) where
v,,, is of the order of the sound speed in the material; hence aberration and
advection terms can be ignored. The comoving-frame line-transfer equa-
tion is then a partial differential equation in (s, t, v) along straight rays, and
is relatively easily solved for steady expansion (M9), (Mll), (M13); how-
ever, for non monotonic flows the problem is much more complex (Nl), and
it may be preferable to work in the inertial frame (M5). Unfortunately,
present prospects for a consistent treatment of the effects of line blanketing
on energy and momentum balance in dynamical media are dim, despite
their probable i~mportance.

“rHE MU IJ7GROUP EQUATIONS

The formal solution yields estimates of E~ and F~ for all groups as a
by-product. However these results may not yield satisfactory spectral

profiles ez and fg because frequency derivatives were ignored in the formal
solution. Instead, we should calculate E~ and FE from the monochromatic
moment equations including the frequency derivatives.

Because we do not require energy densities and fluxes simultaneously in
this step it is computationally more efficient to work with the combined
moment equation. By the same steps leading to (98.22) and (98.30) we can
write (98 .4) as

where the a’s and /3’s are defined in (98.23), (98.24), (98.31), and (98.32),
except that frequency (group) subscripts are appended to f, q, and X. At the
inner boundary we can apply the planar cliffusion because AP<<r,.

()Fl::l= Kg (dBJdT)~;’ L,

Xg ()I (dB/dT)~+l 4rrrf
(98.53)
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Using (98.5 1) to (98.53) to eliminate fluxes from the discrete representa-
tion of (98.1) we obtain the multigroup combinecf moment equation

The A~’s in (98.54) are to be written using upstream cfifferencing, as in
(97.86). Analysis of (98.1) shows that the effective “acivection velocity” of
photons in frequency space is

(Dv/Dt) = [fu(ll in p/Dt) + (3f,, -1 )(v/r)]v. (98.55)

If (LhlDt) >0, photons are shifted to higher frequencies during the timestep,
and writing xv for either f. or (3fv – 1) we choose

A~(~XvEu) = [~~+(,,z)/~~~~]x~E~ – [v~-(Li~~/Av~lx~ -lE~-l; (98.56a)

if (Dv/ Dt) <0 we choose

Ag(vx,,EV) = [Vg.F(3/2)/AVg-I-l] ~g+I~gJ-I – [v,+-(v2j/Avglx,%

(98.56b)

Equation (98.55) shows that the sign of the frequency shift is not necessar-

ily the same as (Dp/Dt), as it is in the diffusion limit, and may even be
different for different frequencies at a given position in the flow. This
property implies that the difference equations (98.54) may not be exactly

conservative when summed over frequency.
Bou nd.ary conditions are obtained by applying the discrete representa-

tion of (98.1) at i = 1 and i = 1, using (98.52) and (98.53) to eliminate F~~’

and F~~-7’.~.

To handle the frequency coupling economically, we put the Az terms on
the right-hand side along with known source terms, and solve the equations
iteratively. As a first estimate we set E~ in A~ (only) to E~–’ = e~E”+l, and

solve the resulting G systems in parallel. We use the new E~’s to
reevaluate the A~‘s, and iterate the solution to convergence. For the
continuum this procedure converges quickly because the frequency-
derivative terms result only in a minor redistribution of energy among bins.
For spectral lines (e.g., included in an ODF) this is not the case, but we
cannot pursue this point further here.

If J iterations are required to achieve convergence, the Computational



494 FOUNDATIONS OF RADIATION HYDRODYNAMICS

effort in this step scales as c.TIG. If one performs a direct solution to handle
the coupling between groups instead of the iterative procecf ure just cfe-
scribed, the computational effort would scale as cIG 3, which is probably
prohibitively expensive for dynamical calculations (as was also true for

multigroup diffusion).
Having found E~~jl,2),, we calculate ~t~”-’ for all i and g from (98.51)

and (98.52). We can then update the spectral profiles gx and +’~, and use
these to re-eval uate XF and KE. Finally, given the radiation field and
source-sink terms in the comoving fluid frame, one must remember to
transform back to the inertial frame when calculating the specific intensity
or flLIx seen by an external observer; this transformation is particularly
important in spectral lines.

99. Transport Solution by Mixed-Frame and VERA-Code Methods

In the mixed-frame method (cf. $93) the specific intensity, angles, and
frequencies are measured in the lab frame, while material properties are
evaluated in the ffu id frame by an expansion procedure. All velocity-
clependent terms then appear only on the right-hand side of the equations.
The method is fundamentally Eulerian, though it is possible to cast it into a
quasi- Lagrangean form.

In the VERA (Variable Ecldington Radiation Approximation) method,
which was developed before the Lagrangean equations of $95 hacl been
derived, the approach was to use a lab-frame spacetime operator, and fixed
lab-frame angles and frequencies, while evaluating both the radiation field
and material properties in the comoving frame. The method thus entails
expansions of both radiation and material quantities, and the resulting
equations are complicated, containing velocity-dependent terms both on
the right-hand side and inside the differential operator. The physical
meaning of the equations is often obscure, and in retrospect a pure
Lagrangean formulation is clearly preferable. Nevertheless the method
merits discussion because for many years VERA was the only code that
handled O(v/c) terms, and was the source of many innovative techniques
such as variable Eddi ngton factors and the multifrequency/grey method.

THE MIXED-FRAME MET-10D

The mixed-frame transfer equation for one-dimensional spherically synw
metric flow is [cf. (93.4)]

c-’(dI,,/t)t)+ v(dIu/dr)+ r-’(l - IA2)(FJIu/dI_L)= 7f,,– KJ1, + (p,r..I/C)(<vl,,+ ~,.,)

(99.1)
where

<U - KU + V(d K,,/dV) (99.2)
and

~,, = 3rf” -[@q”) /2v]. (99.3)
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Here we have omitted the affix “0” on material quantities, with the
Linderstanding that all material properties are evaluated in the comoving
frame; furthermore we have ignored scattering (mu= O) so that X.= Ku.

For simplicity we assume that the opacity is represented by an opacity
distribution function so that Ku -Kg on (vZ, v~+.,). Then the mulligroup

version of (99.1) is

C-l(d&/d~)~ ~(df./d?’+ r-’(~ – p,2)(d~g/d~)= T/g – Kg~g +( f-LI_)/C)(Kg~g + fig),

(99.4)

B B, is given by (82.39), andwhere q~ = Kz g,

Equation (99.3) is written in conservative form so that the term in square
brackets vanishes identically when integrated over (O, ~). To assure this
property in the multigroup equations one can either (1) drop the term in
square brackets in (99.5), which will be small if the frequency spectrum of
the opacity is smooth and (v~_, – Vz) is not too large, or (2) choose an
appropriate definition of q(v~), for example, q(v~) ‘~(Kg_l B~_l + Kg~g).

Taking symmetric and ant isyrnmetric averages of (99.4) for + ~ we find

C-l(djg/dt)l- W(dhg/d~) + ~-’(1– ~2)(dhg/dW) = fCg(~g ‘jg)+(Kdc)Kg~g,

(99.6)

and

C-’(dhg/d~)+ ~(djg/dr)+ r-’(~ - ~2)(djg/d~) = ‘K#g + (~?J/C)Kg(~, +35,).

(99.7)

Integrating these equations over angle we obtain the multigroup energy

equation

(d Eg/dt) = –(1 /r2)[d(r2Fg)/dr] + Kg(47rBR - cE,) + (ll/C)KgFg = R,,

(99.8)

and momentum equation

c-2(dFg/dt) + (1 /qg)[d_fgqgEx)/drl = –(KR/C)Fg + (dC)Kg[fgEg + (4 T/C)Bg],
(99.9)

where f,= Pg/Eg, and q, is defined as in (98.3).

Integrating (99. 8) and (99.9) over frequency we obtain the radiation
energy equation

(dE/dt) = –(1/r2)[d(r2F)/dr]+ 4mK,B – CK~E + (u/c)K&’E R
(99.10)

and the radiation momentum equation

c-2(aF/dt) + (1 /q)[d~qE)/drl = –(KJc)Fi- (dc)[KJE + (4 T/c)KF.B],
(99.11)
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where f is defined by (98.6), q by (98.9), K~ by (98.7), KF by (98.10), and

~K = u‘~d”’K)=(;”J’)/f-
(99.12)

All temm in (99.10) and (99.11) must be kept in order to account for the
work done by radiation forces, and to get the correct flux.

These radiation equations can be coupled to the Eulerian equation of
continuity (19.9), momentum equation [cf. (94.14)]

and total

d

z

F)(pv) 13 1 d(fqE] _ GM,p
—+;(puz+p)+–— —

at qdr––r2’

energy equation [cf. (94. 16)]

(pe -E~pv2+ fZ)+*~ [rz(pe +~pu’+ p)v + r2F] = ‘Gy,

(99.13)

(99.14)

The computational strategy is essentially the same as for the Lagrangean

scheme ($98) or for multigroup diftusion ($97). We solve the coupled
nonlinear hydrodynamic and radiation energy and momentum equations,
assuming that Eddington factors and spectral distributions are known. We
then update the Eddington factors in a formal solution and obtain new
spectral distributions from the mu Itigroup moment equations. The process
is iterated to convergence.

A wide variety of methods can be used to solve the Eulerian hyd-
rodynamic equations, including special techniques to guarantee conserva-
tion and to handle shocks. These are discussed thoroughly in (RI, Chap.
12) and (R2, Chap. 5). In the absence of radiation one can use effectively

explicit techniques like the Lax–Wendroff method; with radiation it is
better to use implicit schemes such as outlined in (K4) [see also (T3)]. The
momentum and total energy equations given in (K4) are easily generalized
to include all the radiation terms written in (99.13) and (99.14], but these
authors assume that the radiation field is quasi-static at the advanced time
level, and ignore O(o/c) terms in the radiation equations. Tt is therefore

worthwhile to write difference representations of the radiation equations
here.

As before, we center fluxes on spherical shells {ri}, (i = 1, . . . . 1~ 1) and
} (i= 1,..., 1), defined by (83.86).energy densities at cell centers {ri+( llz, ,

For the radiation energy equation we have

[E;J~ZJ-Ept,/21/At’L+(”2) = 3[(r:~~)2FjT< - (rV-’-L)2F+1]1[(r:l:()()’ -(r:’-’)’]

+ 47rK ;::(l/2d3;;i1/2) – c’ ::i( I/2FL!(’L/2) (99.15)

~.+-lF:4-1+ v;~’: K;,:;I~i’:)/c7+~(V~+LK~i (ill,..., I),
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and for the radiation momentum equation we write

(7+ KP.T’)F;-’- ‘
———c [~~~ [lXq V!f~/2@~+11/2J—~~~’~~j2Jq~u~;/2$3 ,n–l;/2)li{qi[rV;&2) —H /211}

+V~+’[(K~E)~’ + (4rr/C)(Kp~)~+’]+3’~~, (Z= z, . . . . ~). (9916)

In (99.16), X)i =~[xi_(~,2) +xi+.(J,2)], and -y= l/[c At”’+(1’2)].

Assembling the difference representations of the hydrodynamic and
radiation equations we get a tridiagonal nonlinear system, which is
linearized and solved for corrections [~p,+(l /2), ~~i+], ~77i+(1/2), ~Ei+-(I/2J,

8R+1], (i = 1, . . . . 1) to current estimates of these quantities. Using the
current estimate of the temperature distribution we calculate source-sink
terms and carry out a formal solution at each frequency. As in the
Lagrangean case we can either do a solution along tangent rays with a
system of the form

C-’(a/z/at)+ (w’Lg/&s)= Kg[(~g - jg)+(pLu/c)hg] (99.1 7)

and

c-~(dh,/dt) + (dj~/ds) = Kg[–h, + (Pdc)(jg + 3&)l> (99.1.8)

or for a fixed set of angles {p.,,}, with a system of the form

and

(99.20)

Either set may be difference as described in $83. For 1 radiaf shells, G
groups, and M angles the computational effort for the tangent-ray method
scales as C12G, and for the allgle-differenced method as C1GA43.

An advantage of the mixed-frame formulation is that in the formal
solution one can solve the full transfer equation, which is exactly consistent
with both the multigroup and integrated moment equations. Furthermore,

because the spatial mesh is fixed, the radiation quantities are computed at
the same set of positions and angles at each time level; no interpolations
are required.

Given updated Eddi ngton factors we can calculate revised spectral
distributions from the multigroup moment equations. These equations have
no frequency coupling (in contrast to their Lagrangcan counterparts) hence
can be solved directly with a computational effort that scales as cIG.

The advantages of the mixed-frame scheme are that (1) the equations
have a simple structure, (2) a solution of the full transfer equation is

.. .
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possible, and (3) the multigroup equations are uncoupled. These advan-
tages must be weighed against two serious disadvantages.

(1) Frequency derivatives of the material opacity and emissivity are
required. We have avoided the issue here by assuming a constant opacity
within groups. For plasmas where the opacity is dominated by light ions
and is relatively smooth, reasonable estimates of the necessary derivatives
may be obtainable; but for complex, jagged spectra it is extreme] y difficult
to estimate meaningful opacity derivatives. In particular the expansion
procedure used in this approach is unsatisfactory for spectral lines, which
can be of great importance in media with velocity gradients. A spectral line
is smeared over frequency by a velocity gradient, hence the effective widths
of lines increase and continuum windows between lines are filled in,
producing a substantial increase in the Rosseland mean. An interesting
discussion of the problem using Sobolev theory [see (M3, Chap. 14)] is
given in (Kl), where velocity effects are found to be major. The problems
just described are less serious in the Lagrangean frame, where the opacity
is always that measured by an observer at rest relative to the material.
Here the complication to be faced is the proper treatment of the ~(VEU)/iIV

term, which is fundamentally easier beCiWSe the frequency variation of E.
is usual [y smooth (perhaps even Planckian) even when the opacity spec-

trum is jagged.
(2) We obtain the correct lab-frame flux only by including the two v/c

terms on the right-hand side of (99.11), which dominate V “ P in the
dynamic diffusion limit. Thus the accuracy of the computed flux hangs on

obtaining an accurate representation of these terms in the difference
equations, which is nontrivial because of the interleaving of the radiation
variables on the grid. In contrast, in the Lagrangean formulation we obtain
the correct comoving-frame flux in both the streaming and diffusion limits
without any essential difficulty.

The mixed-frame equations can also be written in quasi -Lagrangean
form. To illustrate the approach with a lminimum of complication, we
consider planar geometry, using the column mass drn = –p dz as indepen-
dent variable. Using the definition (D/Dt) = (d/dt) + v “V and the equation
of continuity, one finds

(r3~,,,/i3t)= p[D(lV/p)/Dt]-V - (fvV). (99.21)

Thus the mixed-frame transfer equation in Cartesian coordinates can be

written in quasi-Lagrangean form

whence we obtain the multigroup equations
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and

the multigroup moment equaticms

-( )D%

Dt p ()(
–~(Fg–7jEg) = ~ 4d3g–cEg+:Fg) (99.25)

P c

and

(99.26)

and the radiation energy and momentum equations

D

-(7 )
–$ (F–vE) =$ (4mKPB– CK.E+~ K.F

Dt ~
(99.27)

ancl

;:(3-+( v)fE-7 F =; [--K,F+v(KJE+ KPB)]. (99.28)

According to the dimensional arguments of $93, (99.28) can be simplified
to

c-2( DF/Dt) – [d(fE)/t)rn] = (l/cp)[– K~F+ v(K~E +- KPB)]; (99.29)

equation (99.26) can be similarly simplified.
Equations (99.28) and (99.29) are coupled to the quasi-Lagrangean

momentum equation (94.14)

Dv

Dt ()
—=–g-+~(p+~)=–g+~+ ~ [K,F–v(KJE+K@3)]

(99.30)

and gas energy equation (94. 19)

(De/Dt) + p[D(l/p)/Dt] = s + [cK~F - 4fiKPB - 2(v/c)K~F]/p.

(99.31)

The solution of (99.27) and (99.29) to (99.31) proceeds essentially as

outlined in $98. The material equations are now complicated by the
presence of velocity-dependent terms. The momentum equation presents
no difficulty if the first form in (99.30) is used, but in the energy equation
cancellation among terms on the right-hand side may be troublesome in the
diffusion regime. The quasi-Lagrangean equations (99.27) and (99.29)
suffer the same disadvantages as their Eulerian counterparts (99.10) and
(99.11). Moreover, in differencing d(vE)/dJTL in (99.27) the centering is bad,
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and one may lose accuracy. The equations in spherical geometry are even
messier and harder to handle well. The quasi-Lagrangean transfer equa-
tions (99.23) and (99.24) contain similar awkward terms, and the formal
solution becomes complicated because now the mesh moves. One either
can ignore the motions, or else must interpolate quantities at the old time
level; both options introduce inaccuracies.

In summary, the mixed-frame method suffers a number of disadvantages,
and while neither formulation is completely free of problems, we judge the
Lagrangean approach of $98 to be physically more appealing, and both
simpler and more accurate in application.

THE VERA-CODE METHOD

In the W31V-code method (F4), (P2), (S2), spacetime, angles, and fre-
quencies are measured in the lab frame while the specific intensity and

material properties are computed in the comoving frame. We will derive
the equations in spherical symmetry, and then restate important results in
tensor notation so that they apply in general geometries.

We start from the mixed-frame equation

and transform lWU= I(r, t; w, v) to the comoving frame by a first-order
expansion. Thus from (89.10), (89.1 1), and (90.3) we have

q.= (d%)’l”(wo> n)= (1 + B1-Lo)’[I”(w, v)+ (UO– v)(aI”/dv)

+ (KO– ~)(dIo/d~)]+o(l)2/c2)

= (1+ 3f3p)f:u- f3Wld1°/av) - f3(l - w’)(aIo/d~)+ o(zJ’/c’).
(99.33)

More generally,

I(n, v)= [1+ (3v” n/c)] I”(n, v) – (v - n/c)v(dlO/dv) – (v/c) “V.lO,
(99.34)

where V. denotes the gradient with respect to the direction cosines of the
propagation vector.

Integrating (99.33) over solid angle we obtain transformation laws for
the monochromatic radiation moments:

E“ = E:+ (2v/c2)F’– (u/c2)[~(vR)/d~], (99.35)

F,, =@+ u(ER + P!) – u[d(vp:)ldvl> (99.36)

and

P.= PS+ (2v/c2)~ – (0/c2)[d(~Q~)/~~1. (99.37)
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Or, in tensor form

E. = E:+ (2/c:2)v . ~ – C-’[d(vv . Fu)/E)P], (99.38)

FU = ~,+vE~-kv . p~–[d(vv . P~)/dv], (99.39)

ancf

P.= P:+ c-’(v~+ ~v) – C-’[d(vv “ Q:)/dV], (99.40)

where

4
Q:= 10(n, v)mn da. (99.41)

One sees by inspection that (99.35) to (99.40), when integrated over
frequency yield the standard O(c/c) transformations of the radiation stress-
energy tensor [cf. (91 .10) to (91.12) and (91.16) to (91.18)].

Substituting (99.33) into (99.32), and using (99.21), we obtain the
transfer equation

Taking the zeroth angular moment of (99.42), we obtain, after some
reduction,

or, more generally,

p[fl(E~/p)/Dt]+V - (~+v “ p!~)–hq~+ CK@~+(K~/C)V - ~

—
‘{[

–; V+v”lt+j;(v”:tm+v” (v” P;)
1)

-;$ (v QE). (99”44)

Similarly, after rearrangement the first moment of (99.42) can be written
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or, in tensor form,

()pDFf’,

[

W a(v oP:) +F ~v—— — +V. P~+%& E;ti+
C2 Dt p c c dt “ “ 1

{[ 1}

(99.46)

+$: V:(V. P:)+ V”(V” Q:)+ CK:V” P: ‘:q:V

In deriving (99.45) and (99.46) the first term on the right was reduced by
use of (99.43) and (99.44).

integrating (99.44) and (99.46) over frequency we obtain the radiation
energy equation

p[D(EO/p)/Dt]+V “ (I@+v” PO)–4fiK8B0+CK ~E(’+(K%C)V - @ (99.47)

= –(2/c2) r3(v . FO)/FH

and the radiation momentum equation

(P/C2)[D(F0/P)/ Dt]+V “ PO+ (K:/C)@

—— -c-2[E0(tw/dt) + rl(v “ pO)/dt +FO “Vv]. (99.48)

Despite its rather different appearance, (99.47) can be reduced to the
Lagrangean radiation energy equation (95.87). To see this we expand

d(v . FO)/dt = a . F+v . (dFO/dt) (99.49)

and

V.(V. PO)= P”: VV+V”(V” PO), (99.50)

whence we find, after rearrangement,

(-)D E. v 3P

‘z p
+V. FO+Z ”=+ PO:Vv+$a” FO

c

( )

(99.51)

=4 TK$BO– CK~EO– V” $%–v. POJ% .c

The last term on the right-hand side of (99.51) vanishes to 0(u2/c2) by
virtue of (99.48). Thus (99.51) differs from (95.87) only by the term

C–2V “ (~l@/tit) on the left-hand side. This term is present because the
operator V in (99.51) is in the Eulerian frame, whereas in (95.87) it is in
the Lagrangean frame. From (92.12) [see also (B2, equation 2)] one has, to
O(vic),

VE =VL – c-’v(a/dt), (99.52)

whence we see that (99.51) and (95.87) are physical] y equivalent.
Nevertheless, one should note that afthough (99.47) reduces algebraically
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to (95.87), from a computational point of view it is quite different, being
more difficult to handle well, and probably yielding less accurate results.

By a similar rearrangement of (99.48) we find

(99.53)

which, by virtue of (99.52), reduces to (95.88).
Equations (99.47) and (99.48) are closed with variable Eddington factors

and then coupled to Lagrangean material momentum and energy equations

such as (98.14) and (98.15); the combined system is solved by the
multifrequency/grey technique as described in $98. (Indeed, the VERA
code is the original source of this method.) Difference representations of
the VERA equations are thoroughly documented in (F4), (P2), and (S2);
here we merely critique the cclmputational procedure.

The VERA equations are more complicated than their Lagrangean
counterparts, and man y approximations were made in implementing them.
Thus in solving (99.47) and (99.48) the VERA code drops all the terms on
the right-hand sides of these equations. Analysis shows that these terms are
at most O(v/c) relative to the dominant terms, hence their omission is
justified. Equation (99.48) is then essentially identical to our Lagrangean
equation (98.8). In (99.47) the term v “ PO has an awkward centering
relative to FO, as does v - FO relative to EO. In retrospect one realizes that
these terms should have been expanded and canceled as in (99.51), which
would have yielded a simpler, fully Lagrangean equation.

The situation for the multigroup equations is worse; all terms on the
right-hand sides of (99.44) and (99.46) were dropped. These omissions are
harmless in (99.46). Most of the terms omitted from (99.44) can be
dropped without ill effect, but it is important to retain d(vV . v . P!)/du in
order to obtain the correct spectral distribution (cf. S97). Again the
Lagrangean equation (98.1) is both simpler and more accurate.

Finally, in the formal solution, it is clear that a rigorous treatment of

(99.42) is hopeless. Early versions of the VERA code (F4) used formulae
of the kind mentioned in $78 to evaluate the Eddington factor from EO and
~. Later versions [(F5), (P2), (S2)] evaluated f from either time-retarded
solutions or static snapshots along tangent rays, omitting all velocity-
dependent terms. As was argued in $98, this approach should be adequate
in many applications, but it is less reliable and satisfying than the Lag-

rangean methods sketched in (98.50) to (98.58), or the mixed-frame
approach outlined in (99.17) to (99.20).

1n summary, the VERA equations resemble the Lagrangean equations,
but are more complicated and more difficult to solve to a high level of
internal consistency; the Lagrangean equations are to be preferred [see
also (B2, pp. 298–299)].
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