
4
Relativistic Fluid Flow

In many radiation hydrodynamics problems of astrophysical interest, the
fluid moves at extremely high velocities, and relativistic effects become
important. Examples of such flows are supernova explosions, the cosmic

expansion, and solar flares, To account for relativistic effects on a macros-

copic level, it is usually adequate to adopt a continuum view, without
inquiring in” detail into the nature of the fluid itself; such an approach is

obviously approp~-iate for a high-velocity flow of moderate-temperature,
low-density gas. In some cases, however, the fluid exhibits relativistic

effects on a microscopic level. These situations require a kinetic theory
approach, which, in addition, has the advantage of providing precise

definitions of, and relations among, the thermodynamic properties of the
m ateri al.

in what follows we shall develop both the continuum and kinetic theory

views of the dynamics of relativistic ideal fluids, thereby retaining parallel-

ism with our earlier work in the nonrelativistic limit, while at the same time

laying a thorough groundwork for the treatment of radiation in Chapters 6

and 7. For relativistic nonideal fluids, we consider the continuum view

only, obtaining covariant generalizations of the results in Chapter 3.
The flows that are of primary importance to us in this book can be

treated entirely within the framework of special relativity. Nevertheless,
many of the equations derived in this chapter are completely covariant and
apply in general relativity. Only in $S95 and 96 will we need to forsake

inertial frames and work in a Rieman nian spacetime. Excellent accounts of

the theory of general relativistic flows are given in (L4); Chapters 5, 22,
and 26 of (M3); (Tl); and Chapter 11 of (W2). Numerical methods for

solving general-relativistic flow problems are discussed in (Ml), (M2), and
(W3).

4.1 Basic Concepts of Special Relativity

In this section we summarize the ideas from special relativity needed to
obtain the equations of hydrodynamics in covariant form. For a more
complete discussion the reader can consult the many texts available [e.g.,
(Al), (A2j, (Bl), (Ll), (L2), (L3), (M4), (RI), (S1), and (W2)].
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34, The f?elaliui~y Principle

In Newtonian mechanics, one presupposes the existence of an absolute
space of three di lmensions i n which one can choose rigid reference frames;
furthermore, one assumes that time is a universal independent variable.

Among all such frames the preferred frames are the nonaccelerating
inertial frames. From an operational point of view one attempts to define a
reference frame fixed i n absolute space through observations of extremely

distant objects (e.g., distant galaxies and quasars). We thus obtain a
fundamental reference system that (1) does not rotate with respect to the
large-scale distribution of matter in the Universe and (2) is symmetrical in

the sense that when we account for the expansion of the Universe, all
material appears to recede isotropically from the observer.

All frames moving uniformly with respect to this f undamenta] system are
inertial frames. Consider a system S’ moving uniformly with velocity v

relative to a system S. Accepting the Newtonian view of space and time,

one would transfol-m coordinates between S and S’ by means of a GaUean
transformation:

X’=x-vxt, (34.la)

y’= y–vyt, (34.lb)

z’ = Z—vzt, (34.IC)

and
t’ = t, (34.ld)

Because S’ does not accelerate with respect to S, an isolated body
moving with constant velocity VOin S will appear to move with a (different)

constant velocity vi in S’. Furthermore, because (34.1) implies that x =
(d2x’/dt2) = (d2x/dt2) = x, if we assume with Newton that a mechanical

force f is the same in all inertial frames, then we conclude that mx = f =
mx’. Thus Newton’s laws of motion are invariant under a Galilean trans-

formation. Therefore the dynamical behavior of all mechanical systems

governed by Newton’s laws is identical in all inertial frames; that is, in
Newtonian mechanics all inertial frames are dynamically equi~’alent, a

property referred to as Newtonian (or Gcddean) rekuivity.

With the development of Maxwell’s theory of electromagnetism, it was
realized that light travels with a unique speed c in vacuum; it was

hypothesized that this propagation occurs in a “luminiferous ether,;’ which

was assumed to be at rest relative to Newtonian absolute space. A
consequence of applying the Galilean transformation to Maxwell’s equa-

tions is that the velocity of light measured by an observer should depend

on his motion relative to the ether. In particular, because laboratories on
Earth share its distinctive mot ion through absolute space, one should be

able to detect the drift of the ether past the lab. As is well known, sensitive
experiments reveal no such effect, and one is forced to conclude that the
Newtonian concepts of space and time are faulty.
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The difficulties just described were completely overcome by Einstein’s

theory of special relativity, which is based on two fundamental principles.

First, Einstein asserted his rekz~iuity principle, which states that all inertial
frames are completely equivalent for performing all physical experiments.

This is a sweeping generalization, because it ilmplies that all laws of
physics, not just Newton’s laws, must have an invariant form (i.e., must be

coucwicmt) when we change from one inertial frame to anothel-. In particu-
lar, a correct formulation of a physical law must not contain any reference,

explicit or implicit, to the velocity, relative to some “absolute space”, of

the coordinate system in which the phenomenon is described. The demand
for covariance of valid physical laws immediately suggests that one must

attempt to formulate them as tensor equations, which, as we already know,
have precisely this property.

Second, Einstein asserted (in agreement with experiment but contrary to
“common sense”) that the speed of Light is the same in all inertial frames,
independent of the motion of the source. This postulate has profou ncf

implications because it is incompatible with Gal ilean transformations, in
which space and time are independent (cf. $35). Instead, a new transforma-

tion, the Lorentz transformation, is required, which couples space and time

into a single entity, spacetime, defined in such a way that Einstein’s second

postulate is satisfied. We then choose as valid physical laws those formula-
tions that are covariant under Lorentz transformation.

35. The Lorentz Transformation

THE SPECTAL LO R13NTZ TRANSFORMATION

Let system S’ move with uniform speed u along the z axis of system S, and

at the instant the origins of S and S’ coincide, set t = t’ = O. At that instant,

suppose that a Iight pulse is emitted from the origin. According to the two

postulates of special relativity, observers in both frames must observe a
spherical wavefront, centered on the origin of their system, propagating

with velocity c. That is, an observer in S will describe the wavefront by the

equation

x2+y2+z2–cW=o, (35.1)

and an observer in S’ by the equation

~’2+y’2+z’2_c2t’2=o, (35.2)

Direct substitution from (34. 1.) show’s that with the Galilean transformation
we cannot satisfy both of these equations simultaneously.

We seek to modify the transformation law so that it guarantees compati-
bility of (35.1) and (35.2), while reducing to the Galilean transformation in
the limit of very low velocities, where our everyday experience applies. For

VX= UY= O, tbe terms in x and y offer no trouble, but we must derive new
transformations for z and t. If we assume that the transformation preserves
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the homogeneity of space, so that all points in space and time have

ecluivalent transformation properties, then we conclude that the transfor-

mation equations must be linear. Thus we hypothesize a transformation of
the form

Z’=y(z–ut), (35.3)

where y is a constant to be determi necl, which reduces to unity for

vanishingly small velocities. We must also modify (34.1.d) because no

transformation of space coordinates alone can yield wavefronts that are
simultaneously spheres in both systems. We +k..o +-. , .Ln 1:-c--- +--- .-4-- . . ..

tion

t’=A~+Bz

where A and B must also be determined.

Substituting (35.3) and (35.4) into (35.2)
find

y2– B2c2=l>

Azcz – -@z= C2,

and

ABcZ + y2v = O.

LIIL1>Lly LklGL1[ILcL1L1<L1131C11111~-

(35,4)

and comparing with (35. 1) we

From these three equations we find that A, B, and

y =A =( I –vZ/c2)-I/2

and

B = –yv/c2.

Using the customary notation 13= v/c, the Lorentz
tions are

X’ =x,

y’= y,

z’ = -y(z-z)t),

and

t’= y(t– /3z/c),

(35.5)

(35.6)

(35.7)

y are

(35.8)

(35.9)

transformation equa-

(35.10a)

(35.10b)

(35.IOC)

(35.10d)

For v/c <<1, (35.10a) to (35. IOC) reduce to the Galilean transformation;

however, the transformation from t to t’ still depends on v to first order, a

fact ignored in the Galilean transformation through the assumption of the

existence of an absolute universal time.
Thus the Lorentz transformation turns out to be a four-dimensional

transformation in spacetime. In spacetime, let us now choose coordinates
x(o)=c~, ~(l)=x, X(2)= y, and X(3)= z. Then if x is a four-colnponent column

vector, (35. 1.0) can be written in matrix notation as

xf. ~ (35.11)
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where L is the matrix

()
Y o 0 –p-y

L=
o 100

0 01 0

–P1’ooy

(35.12)

In component forlm, (35.11) can be written

x ‘m= L; ’x@ (35,1.3)

where L;’ is the element in the a’th row and ~th column of L; from
(35. 13) it is obvious that

(dxc’’/dx~) = L;’. (35.14)

Notice [hat L is symmetric, so that L’ = L. Furthermore, it is easy to show

by direct calculation that ILI = 1.. We demand that all valid Lorentz
transformations have unit determinant; the significance of this requirement
will become clearer below when we discuss Minkowski coordinates.

The matrix L transforms quantities from S to S’; clearly there must be
an inverse transformation L–l such that

~=L–]xf. (35.15)

By direct calculation of the inverse of L one readily finds

()
‘y Oo(+y

L-l= o 10 0

0 11 0

(+yoo’y

(35.16)

This result is precisely what we would expect on physical grounds because

if observer O in S sees S’ moving with velocity u along the z axis, then

from the principle of relativity O’ in S’ must see S moving with velocity –v

along his z’ axis. Both points of view are equally valid, hence the
transformation from S’ to S must be the same as that from S to S’, but
with the sign of o reversed; equation (35.16) has precisely this property. In

component form
x = = L;x~’, (35.17)

where L~! is the element in the ath row and (3’th column of L– [. Hence

Finally, note in passing that the inverse relationship between L and L-’
implies that
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LO RENTZ-FITZGERALD CO NITLACTIOK AND TI ME DI LATTON

Let us now examine some physical consequences of the Lorentz transfor-
mation. One is that a standard measuring rod will be found to have a

different length by observers in the two frames S and S’. From (35.10) we

see that Ax’ = Ax and Ay’ = Ay, hence the lengths of intervals perpendicu-
lar to v are the same in both frames. But suppose that we have a rod of
length Az at rest along the z axis in S, and an observer in S’ Imeasures its

length at a given instant t’.Then, using z = -y(z’ + /3ct’) from (35.15), we see

that

Az’ = Az/y; (35.20]

that is, the rod appears to have contracted by a factor (1 – v2/cz)”2 when it

moves relative to tbe observer making the measurement. This is known as

the Lorentz–l%zgercdd contraction ejfect. The length of a rod is greatest
when it is at rest relative to an observer; this is its proper length.

Similarly, suppose we have a clock at rest in S which is observed by O’ in

S’; then from (35. 10d), we find

At ’=y At; (35.21]

that is, the clock appears to run more slowly when it is in motion relative to
the observer. This is the time -dikttion effect. When a clock is at rest relative

to an observer it keeps proper time, and appears to go at its fastest rate.
Equations (35.20) and (35.21) imply that the spacetime volume element

is invariaut, that is,

dVdt =dxdy dz dt=dx’ dy’ dz’ dt’= dV’ dt’, (35.22)

where dV and dV’ denote ordinary three-dimensional volume elements in

S and S’. We shall use this result repeatedly.

THE SPACETIME lPJTERVAL

An event (or world point) in spacetime is specified by its four coordinates
(x(o), ~(1), x(z),

X(3)) = (CL X, Y, Z) which tell when and where the event OC-

curs. The sequence of world points belonging to a real particle is called its

world line, which describes the particle’s motion in spacetime. The
spacetime interval ds between two events is defined to be

ds’=–c’ dt2+dx2+dy2+ dz2=–c2 d~2; (35.23)

(35.23) also defines tbe interval of proper time, dr.
The arrangement of signs (–; +, +, ~) in (35.23) is known as the

signature of the metric; the choice made here is the “spacelike” conven-
tion. Some authors use the “timelike” convention (+; –, –, –). Both

choices are equally valid, but formulae using the two conventions can differ
in the signs given to various terms; it is essential to check the signatures of

the metrics when comparing formulae from different sources.
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The importance of the expression (35.23) for the spacetime interval is

that it is a world scalar, that is, it is invariant under Lorentz transformation,
and hence provides a coordi nate-independen~ measure of the “distance”

between events in spacetime. The invariance of both the form and the
value of dsz under the special Lorentz transformation derived above can be

easily verified by direct substitution from (35.10). We will demand that
general Lorentz transformations (derived below), which describe the mo-

tion of S’ relative to S along an arbitrary direction, must also preserve

invariance of the spacetime interval; this requirement helps to determine

the form of the general transformation laws.
We can write the interval, which is the line element of spacetime, in

standard metric form (cf. $A3 .4) as

dsz = qm~dXe dxp, (35.24)

where Greek indices run from O to 3. In this tensor form it is obvious that

the interval has an invariant value under coordinate transformation. The

tensor

()

–1000

0100
~=

0010
(35.25)

0001

is called the Lorentz metric. While the metric in ordinary three-dimensional

space is positive definite (being the sum of squares), the Lorentz metric is
indefinite, and ds2 may be positive, negative, or zero.

Transformations of coordinate systems imply transformations of the
metric tensor according to the standard rule [cf. equation (A3. 17)]

(35.26)

where we have used (35.18). Tn view of the invariance of the form of dsz
u rider Lorentz transformation we know that q i5 = Vtie; hence we accept as

valid Lorentz transformations only those transformations for which

(35.27)

It is easily verified that (35.27) is satisfied by the special Lorentz transfor-

mation derived above. Finally, it is worth noting that the reciprocal tensor

satisfies -qm@= ~.~, and that ~.~~~’ = 81.
Intervals can be classified into three categories: they are called spacelike

if dsz> O, timelike if dsz <0, and null if dsz = O. Because the interval is

invariant this categorization is unique, and an interval which is, say,

spacelike in one frame will be spacelike in all frames. For two events
separated by a spacelike interval there always exists a Lorentz transforma-

tion to a particular frame in which the two events occur simultaneously at
two different locations. Similarly, for two events separated by a timelike
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interval there always exists a Lorentz transformation such that i n some

particular frame the two events occur at the same location at two succes-

sive times. From this fact one sees that the world Iines of physical particles
must be ti melike.

Null intervals describe photon paths. From any given event in spacet ime

the ensemble of all photon paths generates a null cone along which light

signals propagate. The volume around the xO axis contained within the
cone comprises all timelike intervals, and can be separated into an absolute

future and an absolute past relative to the event at the origin. The volume

of spacetime exterior to the null cone comprises all spacelike intervals and
represents a conditional “present” in which events are absolutely separated
in space.

Finally, let us reconsider the invariance of the spacetime volume element

in the light of the metric form for the interval. We know from general

considerations [cf. equation (A3.21)] that

J_T ~x(0) ~x(I) ~x(a) ~x(s) = J~ ~x(0) ~xJ(I:I ~x(a) ~x(s), (35,28)

where q = Iq..e I and q’ = lV~51; minus signs appear in (35.28) because the
determinants are negative. But q~@ - q.@, hence q‘ ~ q. Thus (3S .28)

immediately leads back to (35.22).

‘“~HE GENERAL LORENIY “I3UNSFORMATION

The special Lorentz transformation derived above applies when S’ moves

along the z axis of S. Suppose now that S’ moves with a velocity v in an

arbitrary direction relative to S (again assuming that the origins coincide at

f = t’ = O and that the axes in the two systems are parallel). We can calculate
the correspond ng general Lorentz transformation by introducing two

additional frames SO and S6 rotated with respect to S and S’, respectively,

such that v lies along the Z. and Z8 axes. We first apply the special Lorentz

transformation between So and S8, and then undo the rotations to recover
the transformation between S and S’. The calculation is straightforward

but tedious, and we can infer the form of the general Lorentz transforma-

tion more easily by arguing along a somewhat different line.
Adopting for the moment the three-vector notation x = (x, y, z), v =

(v., v,,, v.), and B = v/c, we notice that for the particular choice v = (0, 0, V)
we can write

B-2(3(3 “ X=(O> o,z), (35.29]

hence

x–p-2flp “x=(x, y, o), (35.30)

and therefore

[1 +(y–1.)p-2(3p] ox=(x, y, yz). (35.3:1)

Thus the lower right-hand (3X 3) matrix in the special Lorentz transforma-

tion (35.12) can be regarded as the limiting foml of the dyadic [1+

(Y – ~)~-’~~]. Similarly the row and column three-vectors flanking the
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(0,0) clement in (35.12) are lilniting forms of the vector –~-y. We
therefore propose that the general Lorentz transformation can be written
i n the form

()(

Ct’ Y——
x’ –YB I+(Y::;B-2BB)C) =L(:) ‘3’32)

or, equivalently,

t’=y(t–v. x/c2) (35.33)

and

x’ = X+{[(y – 1)(V . X)/vz] – -yt}v. (35.34)

We shall find these results useful later.

Equation (35 .32) can be verified by the direct calculation mentioned

above. It is also easy to show by direct calculation that this transformation

satisfies the basic requirement (35.27). Finally, by a lengthy and tedious
calculation, one can show that ILI = 1, as required. Thus (35.32) does

indeed give the correct Lorentz transformation. The matrix L is often

called the boosl matrix.

FOUR-VECTORS

We have thus far considered only transformations of the coordinates or of

coordinate increments. But clearly we can adopt the Lorentz transforma-

tion as a general transformation for any four-vector in spacetime. Thus let

A“ be a general contravariant four-vector; often it is convenient to represent
it as

~ = (A(o), a), (35.35)

where a is an ordinary three-vector composed of the three space compo-
(2 A(3) of A. Using the standard transformation law fornents (A(’), A , )

contravariant vectors, we find that under Lorentz transformation A be-

comes A where

A’W = (dx’a/dxB)AB = L~’A@. (35.36)

in matrix notation, which is convenient for calculation, A = LA and

A = L-’ A’ where A and A now denote four-elelnent co] umn vectors.

We can define the general covariant vector 13a as

B.. = q@@. (35.37)

(o) BI =B(lI, B2=B(z~, and Bq= B(3) orWe then have BO=– B ,

Bw = (–B(”), b).

Using the standard transformation law for covariant
urider Lorentz transformation, B becomes B’ where

B:= (dxB/dx’a)B@ = L~B@.

(35.38)

vectors, we find that

(35.39)
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in matrix notation B’* = B’L-’, or transposing and recalling that L-J is

symmetric, B’ = L- ‘B.
We can assign a length 1 to a four-vector through the relation

the result is manifestly an invariant, hence we can uniquely classify general

four-vectors as spacelike, timelike, or null.

Second-order contravariant four-tensors transform as

which in matrix notation is T’ = LTL’ = LTL because L is symmetric.

Similarly

T“@ = (axa/dx’’’](dxdxd) T’’)T’Wu= L;. LE.T’W”.> (35.42)

or T=L–l T’(’–l)’ = L–l TL–l because L –‘ is symmetric. Similar relations
can be written for second-order covariant tensors.

From the above considerations we see that Lorentz transformations of

four-vectors and four-tensors are merely special examples of the standard

tensor formal islm outlined in the appendix. It follows that physical laws
expressed as tensor equations containing four-vectors and four-tensors will

autolnatically be covariant under Lorentz transformation, and hence will

satisfy Einstein’s principle of relativity. We shall therefore seek relativistic
general izations of familiar non relativistic relations by attempting to restate

them in four-tensor form.

M lNKOWS K I COORDINATES

An interesting perspective on the geometrical nature of Lorentz transfor-

mation can be obtained by considering the properties of spacetime in a

coordinate system introduced by H. Mi nkowski. Minkowski’s formalism
was of great importance in the development of relativity theory, and often
provides an effective tool for deepening one’s understanding of physical

problems, particularly in relati17istic kinematics.

Minkowski chose the coordinate system (x(”), X(l), x(z), X(3))= (ict, x, y, z),
@ the Minkokvski metric is IA@@= ~~~. Thus> infor which dsz = I-LabdXC’ dx ,

this coordinate system, the metric is positive definite, providing an obvious
similarity between the spacelime interval and the line element of three-

space. In Minkowski coordinates we have X’ = Ax, where the Lorentz
transformation is now given by

[-Y O 0 –i(3y\

(35.43)

we see that A is Elermitian, that is, A = AT where “~” denotes the tid~oint
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(i.e., conjugate transpose) matrix [see, e.g., (MS, $$49-51)]. More impor-

tant, it is easily shown that A-’ = A’, so that in Minkowski coordinates the

Lorentz transformation is orthogonal (more precisely it is unitary).
Moreover one easily sees that \Al= 1. Hence we conclude that in Mi n-
kowski coordinates a Lorentz transformation is merely a rotation in

spacetime. This resu It applies not only to four-vectors but also to four-
tensors; for example it is easy to show that the transformation law for a

second-order contravariant tensor becomes T’ = ATA–’, that is, it is a
similarity transformation, as expected for a rotation.

Given Minkowski’s interpretation of the geometrical significance of the
Lorentz transformation as a pure rotation, it becomes intuitively obvious

that the form (and value) of the spacetime interval must remain invariant.
Even though Minkowski’s approach can sometimes provide clear and

beautiful insights, in practice it is a nuisance to work with complex vectors
and transformation matrices; therefore, having considered the conceptually

important results just discussed, we will not use these coordinates further
but wi II work exclusively with the Lorentzz metric.

36. Relativistic Kinematics of Point Particles

FOUR-VELOCITY

To treat the relativistic kinematics of particles we must develop four-

dimensional generalizations of the concepts of velocity and acceleration. If

a particle moves on some path [x(t), y(t), z(t)] in three-space, then its
three-velocity has components v = (dx/dt, dy/dt, dz/dt). We cannot use this
definition in four-space because t is not invariant under Lorentz transforma-

tion; hence the vector v will not have the transformation properties

appropriate to a four-vector. We overcome this difficulty by using the
proper time ~ as the independent variable because d~ is a world scalar.

From (35 .23) we see that the relationship between proper time and
lab-frame time for a particle moving with an instantaneous three-velocity v
is

d’={’-$[(%Y+(%Y+ (%rll’’2dt=(”2”’2)22d’2d’ ‘361)

Clearly proper time is the time measured by a clock in the frame in which
the particle is always at rest, the proper frame (or comoving frame). We will
usually distinguish proper quantities (i e., those measured in the proper

frame) with a subscript zero, but in the case of proper time it is convenient
to use a special symbol. It should be noted that a particle’s comoving frame
is not generally an inertial frame, a point to which we will return in our
discussion of fluid flow.

Given that proper time is a world scalar, we define the four-velocity as

V“ = (dxm/d7]; (36.2)
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it is obvious that V“ is a genuine contravariant four-vector whose space
components reduce to the ordinary three-velocity v in the limit that
v/c <<1. Hence Va ‘is indeed the correct four-dimensional generalization of

v. In components,

vf”~=c(dt/d7_)=yc, (36.3a)

and

vi = (dt/d7)(dx’/dt) = -@, (i=l,2,3), (36.3b)

hence

V“=y(c, v). (36.4)

By a trivial calculation one sees that the four-velocity has a constant

magnitude:

Vtiv” = –C2. (36.5)

Equation (36.5) shows that Va is timelike. Indeed, the four-velocity of a
particle evaluated in its proper frame is ( Vm)o = (c, 0, 0, 0), hence at any

chosen location, (Vti)O defines the direction of the local proper-time axis in
four-dimensional Spacetime.

FOUR-ACCELERATION

In ordinary three-space the acceleration is a = (dv/dt). Again this expres-

sion is not Lorentz covariant, but if we define

A“ = (dV”/dT), (36.6)

then A“ is a contravariant four-vector whose space components reduce to
the ordinary three-acceleration a in the limit v/c<< 1. Differentiating (36.5)
with respect to proper time we find

[d(VmVa)/d~] = 2Vti(dVa/dT) = O, (36.7)

hence

V.Am = O, (36.8)

which shows that the four-acceleration is orthogonal to the four-velocity in

spacetime. Using the easily derived expression

(d-y/dt) = y’v “a/c’,

we can obtain an explicit expression for W

acceleration a, namely

and thus the

which shows

[

“a
A“ = y$[y(c, v)]= y’ ~ ,a+

magnitude of Aa is given by

(36.9)

in terms of the three-

(%N ‘3610)

AZ= A.A” = y“[a’ + (-YV” a/c)2], (36.11)

that the four-acceleration is spacelike.
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37. Relativistic Dynamics of Point Particles

FOUR-MOMENTUM

The Newtonian momentum of a particle is p = mv, where v is the particle’s
velocity, and m is its mass, which is assumed to be a unique constant that

depends only on the internal constitution of the particle. A relativistic

generalization of this expression must replace v with the four-velocity V“,
and, if the four-momentum P“ is to be a genuine four-vector, we can at

most multiply Va by a wor~d scalar. We thUS adopt the definition

Pm = mOVC’, (37.1)

where mO is the proper mass (or rest mass) of the particle, that is, its mass

in a frame in which it is at rest.

In view of (36.3), equation (37.1) can be written as

@O) = -ymo~ (37.2a)

and

Pi = -ymOvi, (i=l,2,3), (37.2b)

or, more compactly,

Pm= ymo(c, v). (37.3)

We can recover the usual Newtonian definition of momentum from the

space components of Pa if we define the relativistic mass (or relative mass)
to be

(37.4)m =ymo = mo/(l– v2/c2)”2

and write

P“ = m(c, v) =(mc, p), (37.5)

Although it would take LK too far afield to discuss this point in detail,

one should realize that the concept of rest mass is nontrivial. It ilmplies that
we can resolve a real particle into basic constituents (e. g., electrons,

protons, . . . . quarks, .) that we can count, and to each of which we can

assign an intrinsic property called “mass” on the basis of ab initio calcula-

tion using a fundamental theory (e.g., quantum electrodynamics, quantum

chromodynamics, . . .) and/or by astute experimentation. This view is quite
different from the macroscopic approach in which mass is typically defined

operationally by means of experiments (e. g., collisions) that actually deal
with particle momenta [see e.g., (L2, 316)]. Thus while it is often stated

that (37.4) implies that the mass of a particle varies with its velocity, we

consider this view to be misleading at best (and perhaps flatly wrong),

arising frolm a prerelativistic lack of appreciation for the intrinsically
four-dimensional nature of spacetime. We adopt the position that the
“real” mass of a particle is its rest mass, and that the variation predicted by
(37.4) reflects not a property of matter itself, but rather the variation of its
dynamical eflect [as judged by measurements of particle momenttum (and
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energy—see below)] produced by the relativistic relationship between

space and time that results when they are unified into spacetime.
In Newtonian mechanics we demand that the sum xi p, of the momenta

of all particles be conserved in a system of particles not subject to external
forces. The relativistic generalization of this conservation law is that the

sum of the particles’ four-momenta be conserved. We then have four
conservation equations instead of three; as we will soon see, the fourth is a

statement of conservation of energy, because the time-component P(0) of
the four-momentum is proportional to a particle’s energy.

FOUR- FORCE

From Newton’s second law we have the prerelativistic relation

4 = (dp/dt) = d(mv)/dt, (37.6)

where @ is the ordinary three-force acting on a particle. The natural

covariant generalization of (37.6) is

cD” = (dPm/d~)= mo(dVm/d~) = rnOAW. (37.7)

Equivalently,

(37.8)

From (37.7) and (36.8) we see that

Vml$” z (), (37.9)

which implies that

C2W=+.V (37.10)
and hence

0“ = y(@ ov/c, @). (37.11)

Thus the space components of the four-force are proportional to the

ordinary (Newtonian) force acting on the particle, whi Ie the t ilme compo-
nent is proportional to I/c times the work done by that force. All four

components reduce to their Newtonian values in the limit of small particle
velocities. Comparing (37.1 1) with (36. 10] we see that

~ = m[a+ (y’v . a/c2)v],

which shows that because of relativistic effects the acceleration

is generally not in the same direction as the applied force.

Jf we evaluate @ in a particle’s cornoving frame, denoting

(37. 12)

of a particle

the value in

that frame as @:, then we see that @8= O. This result, which we use again
in Chapter 7, is true for all ordinary body forces (e. g., gravity, ignoring
general relativistic e%cts) that act on point particles without changing their
internal state. We shall see below how this result must be modified if the
internal structure (e. g., them ical or nuclear composition, or internal excita-
tion state) of the particle is affected by the forces acting on it.
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EN13RCrY

Classically, the rate at which the force@ does work on a particle equals the
rate of increase of its kinetic energy T = ~muz. But from (37.10) we see

that if the rate of work done is to be identified with the rate of increase of a
particle’s energy, its total energy must be defined to be 2 = rncz + constant.
The zero point cannot be determined by experiment, so we adopt as the

relativistic expression of a particle’s energy the relation

For v/c <<1 we can expand (37.13) as

2 = ?noc*++’noo*[l+:(v2/c2) +:(v’/c”) + . . .]. (37.14)

The first component of the second term on the right-hand side of (37.14) is

the classical Newton ian formula for kinetic energy, and subsequent terms
are relativistic corrections to this formula.

The first term on the right-hand side of (37.14) is nonclassical and
implies that matter has a rest energy rnOc2 associated with its rest mass. The

rest energy of matter is enormous (9 x 1020 ergs/gram), dwarfing ordinary

chemical energies (i e., excitation, ionization) by many orders of mag-
nitude; for example, the ionization energy of hydrogen corresponds to

about 10]3 ergs/gram. It is this equivalence of mass and energy that results

i n the release of vast amounts of electromagnetic and thermal energy in

stellar interiors, in nuclear explosions, and in power reactors of various
kinds, via nuclear reactions that yield products having slightly lower rest

masses than the original input nuclei. More to the point, Einstein em-

phasized that all forms of energy (mechanical, thermal, electromagnetic,
nuclear, etc.) affect the mass, and hence inertia, of a particle, and that

energy itself has inertia.

Using (37. 13] we can rewrite the four-momentum given by (37.5) as

Pa = (z/c, p), (37.15)

which shows explicitly that conservation of four-momentum in a system of

particles implies both energy and momentum conservation, as stated

earlier. From (36.5) and (37.1) it follows that

P-P” = –m~c2, (37.16)

hence from (37.1 5) we obtain the important formula

22 = p2c2+ m~c4. (37. 17)

Similarly, using (37. 13) in (37.8), we can write the four-force as

V = y(:/c, 4), (37. 18)

a form that will prove useful below.
We have thus far tacitly assumed that the rest mass of a particle is a strict

invariant, and insofar as the particle is truly elementary we can defend this
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assumption along the lines advanced in our discussion of four-momentum.

Now suppose that the “particle” is not elementary, but has an internal
structure into which energy can be fed. For example, suppose the particle is

an atom, which can absorb or emit energy; in this case one may take the
view that the proper mass of our nonelementary particle changes by the

mass-equivalent of the energy absorbed or emitted. We must then modify

equations (37.7) to (37.11).
For a variable rest mass the four-force becomes

0“ = wLo(dv”/dT)+(&rLo/dT)v’”. (37.19)

Equation (36.8) remains valid, hence we find

V,,@ = –c2(dm0/d7), (37.20)

which shows that V“ and @ are no longer orthogonal. Substituting from
(36.4) and (37. 18) we find the modified rate-of-work equation

: = @ “V+ (c’–v2)(dwto/d~). (37.21)

We interpret this equation physically as (rate of increase of particle

energy) = (rate of work done by the applied force) + (rate of energy

exchange through other, say radiative, mechanisms). We thus deduce that

the rate of energy input from nonmechanical sources is

W = (C2– u2)(drn0/d~), (37.22)

which, evaluated in the comoving frame of the particle, is WO= c2(drmo/d~).

We must therefore modify (37.11) to read

‘w= 7[(4 . v-t w)/c,~], (37.23)

which shows that in the presence of nonmechanical effects that modify the

internal state of the “particle”, we can no longer assume that d?:= O;

rather, these effects perform “work” as if some additional “force” were

acting. We will find terms of precisely this kind in the equations of
radiation hydrodynamics discussed in $$93 and 96.

PHOPONS

Suppose we choose photons as the particles to be considered. From
quantum mechanics we know that a photon’s energy is 2 = hv and its

momentum is p = hv/c, where v is its frequency. From (37.17) we see that

(mO),,,O,O,,= 0, that is, photons have zero rest mass. Because a photon’s rest
mass vanishes the definition of four-momentum given by (37.1) is no
longer useful.

Nonetheless equation (37.1 5) remains valid, hence we can write the
photon four-momentum as

lvf” = (Pa) P,,O,On= (hv/c)(l, n) = %i(k,k) = fiK&, (37.24)

where n is the unit vector in the photon’s direction of propagation, and
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k = (27rv/c) = (27r/.A) is the photon’s wavenumber. In (37.24), K is the

photon -propagation four-vector, which, as one expects, is a null vector,

K&Km= O, (37.25)

as is the photon four-momentum

MmMm= O. (37.26)

4.2 Relativistic Dynamics of Ideal Fluids

Let Lls now consider the relativistic dynamics of a compressible ideal fluid,
that is, we ignore, for the present, viscous and conduction effects. In
$$38–42 we view the gas as a continuum; even in this case it Will

sometimes be convenient to use particle-counting arguments. We adopt a
kinetic-theory view in $43.

38. Kinematics

In seeking relativistic generalizations of the usual classical expressions that

describe the kinematics of a fluid, let us first consider the question of

reference frames. In general, the velocity of a fluid as measured in a fixed
laboratory frame is a function of both space and time: v = V(X, t). Therefore
when we speak of the corrtoving (or proper) frame of a fluid parcel, we are
in general dealing with a non-inertial frame, because the fluid can acceler-

ate as it moves. In what follows, we need to apply Lorentz transformations

to relate quantities measured in the cornovi ng frame to those measured in
the laboratory frame. Here we encounter a problem because, strictly

speaking, the Lorentz transformation applies only between inertial frames,
which have a constant velocity with respect to one another. To deal with

this problem, special relativity hypothesizes that we can consider the

comoving frame for any particular fluid parcel to comprise a sequence of
inertial frames, each of which has a velocity instantaneously coinciding with

that of the fluid parcel; it is then assumed that a Lorentz transformation

applies between each of these inertial frames and ~he lab frame. When this
is done, the resulting formulation is internally consistent and yields results
i n agreement with experiment. Further discussion of this point can be

found in, for example, (S1, Chapters 4 and 6), and the references cited
therein.

How do we now describe the motion of a fluid and its time evolution?
The covariant generalizations to be used for the velocity and acceleration

of a fluid element are, of course, its four-velocity and four-acceleration. To

describe ti Lme evolution, we must develop a covariant form fol- the La-
grangean time derivative (D/Dt). Frolm a Newtonian view, (D/Dt) is the
time derivative evaluated following the motion of the fluid; put another
way, it is (~/ fl)O, the time derivative evaluated in the comoving frame,
which, in relativistic telms, is just the derivative with respect to proper time

- .
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(D/D~). We thus generalize the Lagrangean derivative to mean (D/D~),

which is a scalar operator in spacetime because proper time is a world

scalar.
lt is easy to write an expression for (EYll~), namely

(38.1)

or, more compactly,

(Iymj = v“ (d/dx~), (38.2)

which is manifestly Lorentz covariant. III the limit v/c<< 1, (D/D~) clearly

reduces to the Lagrangean (D/Dt).
As written, (38.2) applies only in Cartesian coordinates in a flat

spacetime. We can easily generalize to curvilinear coordinates in flat

spacetime [“ffat” implying that all components of the Riemann curvature
tensor arc zero; see, for example, (Al, 149) or (M3, 283)] by replacing the

ordinary derivatives with covariant derivatives to obtain

(Df/D~) = V“f:m. (38.3)

FIere f is any differentiable function. From (38.3) we recognize that (D/D~)
is the intrinsic derivative with respect to proper time in a four-dimensional

spacetime (cf. $15 and $A3.1O). If spacetime is indeed flat then the
covariant derivative in (38.3) merely accounts for curvature of the threc-

space coordinate mesh (say spherical coordinates) in the “ordinary space”
part of the Lorentz metric. But it is worth mentioning that (38.3) is also
valid in curved spacetime for generaf line elements of the form dsz =

gWUdxw clx”, where gWU= gwv(x(o], x(’”, x(z) , x’3)j; hence (38.3) also applies in
general relativity.

39. The Equation of Continuity

In Newtonian hydrodynamics the density is the mass per unit volume, or
the number of particles per unit volume times the mass of each particle;

because both of these quantities are presumed to be invariants, the
Newtonian density is considered to be the same in all frames (e.g., in the
laboratory and comoving frames]. When relativistic effects become impor-

tant, however, the situation is more complicated, and several definitions of

density, each useful in certain contexts, can be made.

First, suppose that in the comoving frame we have IV. particles per unit

proper volume, each of proper mass mO; then the density of proper mass in
the cornoving (proper) frame is

p. = NomO. (39.1)

As measured in the laboratory frame, the density of proper mass will be
different. If we choose a comoving volume element i5Vo, then the number of
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particles in it will be No 8VO; if we count the same particles in the lab frame

we will, of course, get the same number, hence

N8V=N013V0, (39.2)

where N denotes the lab-frame particle density and 8V is the lab-fralme

volume element correspond ng to 8V0. But owing to Lorentz contraction

[cf. (35.20)],

dv=av~ly (39.3)

hence

N=yNO. (39.4)

Therefore the density of proper mass in the laboratory frame is

p = Ivmo = ‘yp(J. (39.5)

From the Newtonian view this quantity can be considered, as our choice of
notation implies, to be “the” density. It is also sometimes useful to define

the density of relative mass as measured in the lab frame to be

p’ = Nm = y2Nomo = yp = Y2p0, (39.6)

in terms of which we can write the momentum density as p’v, where v is
the ordinary three-velocity of the fluid.

To derive a relativistic version of the equation of continuity we start

from the standard Newtonian equation

p,, +(pv’),i = o, (39.7)

which, using (39.5), can be rewritten as

(l’P()),, + (’YPOV’),, = O. (39.8)

Now recalling that V“ = Y(C, v), we see that (39.8) is simply

(Pova),a = 0> (39.9)

which is manifestly covariant under Lorentz transformation. We thus

accept (39.9) as the correct covariant generalization of the equation of
continuity in a flat spacetime,

Tf we choose curvilinear coordinates or have a curved spacetirne, the

further generalization of (39.9) is

(p,va);ct=o. (39.1.0)

For example, see (PI, 230) for (39. 10) written in spherical coordinates.
The vector NOV’m is the four-dimensional particle flux density vector. The

equation of continuity is thus merely a statement that the particle flux
density is conserved in spacetime, that is, that particles are neither created
nor destroyed. If particles are not conserved (e.g., nuclear reactions occur),
then a source-sink te~m must appear on the right-hand sides of (39.9) and
(39.10).
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40. The Material Stress-Energy Tensor

In $23 we saw that in Newtonian fluid dynamics the three equations of
momentum conservation can be formulated as

where IJ is the momentum flux density tensor

rl’j=p~’~i+pa”, (40.2)

and fi is the externally applied force density. We wish to construct a similar

formulation in spacetime, and we therefore seek four-dimensional

generalizations of H and f. We defer the question of the force density to
$41 and concentrate here on obtaining an appropriate expression for the

rnuterkd stress-energy tensor M, which is the Lorentz-covariant generaliza-
tion of the Newtonian momentum flux density tensor. Notice also that the
left-hand side of each equation in (40.1) can be expressed as the four-

divergence of a suitable four-vector, hence we expect to be able to cast the
dynamical equations into the form of a four-divergence of M.

Jt is clear from the outset that we will arrive at four conservation relations

rather than three. Of these, three will be momentum conservation equa-

tions, From (40. 1) we see that the space components I@i of the stress-
energy tensor should be generalizations of II”, and hence account for the

momentum flux density, both macroscopic and microscopic (i.e., pressure),
in the fluid, while the zeroth column M“” must reduce to c times a

component of the momentum density. [The factor of c is needed because

in the four-divergence operator, (d/dxC’) is C–l (d/~t).] Furthermore, we
recall from $37 that when we generalized the conservation law for the totaf

Newtonian momentum of a group of particles to conservation of their total

four-momentum, the fourth equation turned out to be an expression of
energy conservation. The same is true for a fluid, hence we expect the

stress-energy tensor to contain an element A4°0 representing the total
energy density of the fluid and a vector MO; representing (1 /c) times the

energy flux in the jth direction of the flow. (Again the factor of 1/c is
needed to balance the sa]me factor in d/dxO.)

Thus on the basis of the Newtonian equations alone we expect M to be

of the general form

(

~ = POOC2 Cpv

)
(40.3)

Cpv pv,ui+p~~i

where we have written m instead of M to emphasize that (40.3) is not yet

the relativistic stress-energy tensor, inasmuch as it is not covariant. Follow-
ing L. H. Thomas (T2), we have written

RIO= PO(I + dc2) (40.4)

where e is the specific internal energy of the gas produced by the

microscopic motions of its constituent particles, poo is the total mass density
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of the fluid, including the mass ecluivalent of its thermal energy, and pOc)c2
is the total energy density of the fluid. Both pO and e are defined in the

propel- frame (see $43) and arc world scalars, as is pOO.
In constructing an expression for M we are guided by three general

principles: (1) it must be covariant, and hence must contain only world

scalars, four-vectors, and four-tensors; (2) it must give the correct fluid

energy density and hydrostatic pressure in the comovi ng frame; (3) it must
yield the correct nonrelativistic equations in the laboratory frame when

I)/c<< 1.

From (40.3) with v = O we see that in the comoving frame we must have

()
POOC2 000

MO=
o poo

o Opo

o Oop

(40.5)

We could now obtain the components of M in the lab frame by applying a

Lorentz transformation to (40.5) as in equation (35.42) [see e.g., (W2, 48)].
But a simpler approach is to notice that in the comoving frame V;=

(c, 0,0, O), hence in this frame

()

C2 000

(V”v”)o =
0000

0000’
(40.6)

0000

while in this same frame the projection tensor is

H
0000

0-100
(P”Bjo= ~”6+c-2(V”VB)o=

0010”
(40.7)

0001

We use the projection tensor extensively in $4.3. Substituting (40.6) and

(40.7) into (40.5) we conclude that

(40.8)(A’fmB)()= (pm+ p/c2)(vav@)o+ p7f”@.

Again we follow Thomas (T2) and define

Pooo= Poo+ P/c’ = Po(l + h/c2), (40.9)

where h is the specific enthalpy of the fluid. If we can assume that p is a

world scalar (see $43) then we see that

is a fully covariant expr-ession for M, which reduces to (40.8) in the

comoving frame. Notice that M is symmetric.
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It is obvious by inspection that (40.10) satisfies requirements (1) and (2)
stated above. To check whether it also satisfies requirement (3), we write
p = -yp(, as in (39.5), note that in a nonrelativistic fluid e/c2<< 1 and

p/poc2<< 1, and expand in powers of VIC. We find

A@ = -v’pc)uivi[l +(pOe+p)/pOc2] +p8ii ~ pv’vi+p~” +O(v2/c2)

= rIii+ o(v2/c2), (40,11)

which is the correct nonrelativistic expression, while

fvf)i = ~’”= y2pOCVi[l + (pOe + p)/pOc2] - cpu’ +0(~2/C2),

(40.1 2]

which is c times the momentum density, as expected. Furthermore,

@O= y2pO(C2+ e + po2/pOC2)

= -yp(c’+ e)+ O(v2/cz) -+ pc2+~pu2+-pe +O(02/c2), (40.13)

which is the correct nonrelativistic energy density (including rest energy) of

the fluid. Hence (40. 10) does in fact provide a fully satisfactory expression
for M.

The stress-energy tensor does not in itself provide a complete description

of the fluid. To obtain a complete system of equations we also require
constitutive relations that describe the microphysics of the gas. We need at
least a caloric equation of state relating e to p and PO, and perhaps also an

ecluation of state of the form p = p(pO, T) where T is the proper temperature

of the fluid. In practice these relations must be obtained from microscopic
kinetic-theoretic considerations, and are operational ly definable only in the

comoving frame of the fluid (see $43).

Finally, it is worth noting that (40.10) also applies in general relativity if
we replace the Lorentz metric -q”@ with a general metric gin@.

41. The Four-Force Density

To obtain a Lorentz-covariant generalization of the right-hand side of

(40. 1) we use the four-force density

where @“ and @ are, respectively, the four-force and the Newtonian force

acting on a finite element of material contained in the proper volume 8 VU.
Fw is a four-vector because cD” is a four-vector and 8V0 is a world scalar.
In any arbitrary frame we define the ordinary force density to be f = @/t5V.

Therefore

F&= (y 8V/~Vc,)(f - V/C, f). (41 .2)

But from (39.3) ?iVO= y8V, hence

FW= (f . V/C, f). (41 .3)
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Thus in the relativistic equations of hydrodynamics the four-force den-
sity in any frame has space components equal to the Newtonian force
density in that frame, and has a time component equal to the rate of work,

per unit VOIume, done by the Newtonian force density. Put another way,

the four-force density has space components equal to the rate of increase
(per unit volume) of the momentum, and a time component equal to l/c

times the rate of increase of the energy, of the material, as measured in the
frame of reference adopted.

42. The Dynamical E@ations

GENERAL FORM

Arguing by analogy to the Newtonian equations (40.1), we expect the

relativistic fluid-dynamical equations to have the general form

M:: = F=, (42.1)

or

(POOOV’aV@+ pg”R);@ = F@. (42.2)

Here ge@ may be the Lorentz metric q ‘iG if we use Cartesian coordinates in

a flat spacetime, may have space components appropriate to curvilinear

coordinates imbedded in a flat spacetlme, or may be a general metric in

curved spacet ime.
Writing (42. 1) and (42.2) out in Cartesian coordinates, using (40.10) and

(41 .3), and defining p, - y2pO00, we obtain

(PJ- P/c2),t ‘( Ploi),i ‘f”/c = (f “‘/cZ), (42.3)

and

(Pl~’),, +(Plvivi+paii),i =f’, (i=l,2,3), (42.4a)

or

(Plvi),t ‘f(PIvivi),i + P,i ‘~i, (i=l,2,3). (42.4b)

In this form the actuations bear a close resemblance to their Newtonian

counterparts. Equations (42.4) are the momentum equations. Equation
(42.3), while bearing a superficial resemblance to the Newtonian continuity

equation (to which it reduces in the limit c ~ ~), is actually the energy
equation; this becomes more apparent if we write out p, to display all

physical variables explicitly:

[72(Poc2+Poe +P)– Pl,t +b2@oc2+~0e ‘P)vil.i ‘f - v, (42.5)

and

[~2(POc2+ poe + p)ui],( + [V2(POc 2+pOe +p)viu’],i +c’p, = cz~i

(i= 1,2, 3). (42.6)

If in (42.5) one again defines p = YPO, expands the other factor Y, drops
terms of 0(v2/c2) and higher, and, finally, subtracts C* times the continuity

. . .
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equation (39.9), one recovers the nonrelativistic energy equation (24.6).

We will discuss a similar reduction of the momentum equation (42.6)

shortly.
Detailed expressions for (42.5) and (42.6) in spherical coordinates are

given in (PI, 230231).

THE GAS ENERCrY EQUATION

We can cast the energy equation (42.3) into a much more revealing form

by reducing it to a gas energy equation following L. H. Thomas (T2). Form

the inner product of (42.2) with V, to obtain

VaV%moV@):@ + pOOOV@(VeVj) + ga@Vmp>~= V.F”. (42.7)

But V.VU = –C2, which implies that VmV~~= O; hence (42.7) reduces to

C2(POOOV”) ,. – V“P,. = – V&”. (42.8)

Now subtracting (C2 + e + p/po) times the continuity equation (39.1 O) from
(42.8) we find

pOV”[(~e/dxa) – (p/p~)(@o/dx”)] = –VaFN, (42.9)

or, recalling that Vm (d/~x&) = (D/D~),

(42.10)

From (37.23) and (41.. 1) it follows that if we are dealing with ordinary

body forces, which conserve particle numbers and rest masses, VtiFm = O.

The flow is then adiabatic and we obtain

(De/Lb-) + p[D(l/po)/D7] = O. (42.11)

as the relativistic generalization of the Newtonian gas-energy equation for

an ideal gas. Equation (42.11) is the one that most simply relates e, p, and

PO, which are all defined in the Conloviw frame. Moreover, it obviously
reduces to the Newtonian gas-energy equation as c -+ ~, and differs from it
in general by terms of O(v2/c2).

Of course, if physical processes operate in which the numbers or rest

masses of the particles in the fluid are not conserved (nuclear reactions), or
through which the fluid can dissipate or transport energy internally (viscos-
ity and conductivity), or exchange energy with an external source (radia-

tion), then VmFm#O, and the flow is no longer adiabatic. We consider such

cases in 54.3 and Chapter 7.

THE MOM13$TUM EQUATION

The momentum equations (42.4) can also be manipulated into a much
more useful form. Multiplying (42.3) by vi and subtracting the result from
(42.4b) we obtain

Pl(”i,t ‘oiui,i)+ P,i ‘(Ui/C2)p,~‘f, ‘Vi(f “V/Cz). (42.12)
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Then using (38.2) for (11/D~) and defining px = ypOOO,which is the relative
density corresponding to the proper mass density plus the mass equivalent

of the fluid enthalpy, we have

p.@v/D7) =f–Vp – C-2V(P,,+f - V), (42.13)

which is the relativistic generalization of Euler’s equation of motion (23.6)

for an ideal fluid. These equations assume their simplest forlm in the

comoving frame where v = O; we then have

Pooo(~v/~~) = Pooo(~v/~~)o = fo – VP. (42.14)

Equation (42. 14) now appears almost identical to Euler’s equation.
For problems of fluid flow, a characteristic time-increment is At- Ax/v,

where Ax is a characteristic length and u is a typical velocity in the flow.

Therefore the term in (dp/dt) in (42.13) is 0(vz/c2) compared to Vp; it is
thus apparent that (42. 13] differs from its Newton ian counterpart on] y by

terms that are 0(v2/c2). In Chapter 6 we find that when radiative effects

are taken into account the sit uation is quite cliff erent, because frame-

dependent terms that are O(v/c] appear.

ci13Nmw. Rm_,4TmlsTlc EQLATlOKS

In general relativity the hydrodynamic equations can be written in the very
compact form

M!$=O. (42.15)

Here one assumes that spacetime is Rleman nian, with an intrinsic curua -

ture, and is described by a general metric gm@of which each element can be
a function of x(o), . . . . X(3). In such a formulation, the quantities interpreted
as forces in special relativity are found not to be independent physical
entities, but instead are results of spacetime cm-vat ure, which, when one

computes covariant derivatives in the curved manifold, leads to additional
terms interpretable as forces. For a detailed discussion of this view the

reader should consult one of the texts on general relativity cited at the end

of this chapter.

43. The Kinetic Theory View

Instead of considering the fluid to be a continuum, let us now suppose it to

be composed of a large number of paricles, each having a rest mass rno. We

can use kinetic theory to calculate particle-energy and particle-momentum
densities and fluxes; in doing so, we will find that we have constructed the
fluid stress-energy tensor directly from microscopic considerations. Our
treatment parallels that given in (Ll, $10) and (PI, Chap. 9) to which the
reader can refer for further details. We do not attempt to treat particle

collisions OJ- general relativistic effects; these topics are discussed in (Dl),
(E2), and (S2), and the references cited therein.
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TH13DISTRTBUIIOK FUNCTION

Let f’(x, p, t) be the particle distribution function defined such that at time t

the number of particles in a volume element dx centered on x, and with

momenta in a momentum-space element dp centered on p, is

~(x, p, t)dx dp; here all quantities are measured in the laboratory frame. In
what follows we will focus on a single point in spacetime; to economize the

notation we suppress reference to x and t.

If a particle’s velocity in the lab frame is u, decompose it into

U=v+u (43.1)

where

‘= Juf@dp/Jf@)dp
(43.2)

is the flow velocity of the fluid, that is, the average velocity of the particles

in a small neighborhood of x, and U is a particle’s random veloci~
(measured in the lab frame) relative to the flow velocity.

The frame moving with the flow velocity is the comoving frame; quan-
tities measured in this frame are denoted with subscript zero. For example,

the random velocity of a particle in this frame is U(I, its momentum is po.

and the distribution function is fO(pO). The third set of frames of interest

comprises the rest frames of the particles, each of which moves with one of
the particles. Quantities lmeasured in one of these frames will be denoted
with a prinle. except for a particle’s rest mass, which we will stiJl call mo.

INVARIANCE OF THE D ETRIBUTIOh” IITNC7TC)N

Suppose we choose a definite group of particles. Observers in both the lab
and comoving frames will count the same number of particles in the group,

even though the particles will be observed LO be in different phase-space
volume elements. We therefore have

f(P) dx dp = fo(p,) dxo dpO. (43.3)

Consider a proper volume element dx’ in the rest frame of some particle.
According to (39.3) an observer in the comoving frame will measure its
~,olume to be

d%= (1– @C2)1’2 dx’, (43.4)

while an observer in the lab frame will measure its volume as

dx= (~ – U2/C2)”2 dX’.

Hence

‘@=(:% ’’zdx

On the other hand, if the particle has rest mass mo,

energy in the cornoving frame is

20 = moc2/(1 — IJ;jcz)liz,

(43.5)

(43.6)

(37.13) implies that its

(43.7)
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and in the lab frame it is

z = f’noc2/(1 – u2/c2)]’2; (43.8)

comparing with (43.6) we conclude that

(ix” = (2/2.) fix. (43.9)

We can relate dp to dpo by applying the general Lorentz transformation
(35.32) with velocity –v (the velocity of the lab frame as seen from the
comoving frame) to a particle’s four-momentum measured in the comoving

frame. We obtain

z=-y(zo+v opo), (43.10)

and

(43.11]p= po+[’Y(2”/c2)+ (y– l)V “po/02~.

In general we can write

dp = ~(p(’), p(2), p(3)/p!), p$)> p~3))dpo, (43.12)

where J is the Jacobian of the transformation from the comoving system to

the lab system. To simplify the calculation we do not use (43.11) directly,

but instead rotate the coordinate axes such that in the new coordinate

system the comoving frame moves with velocity v along X(3). In this new

system we have from (35. 15).

(;/c, p(’), p(z), p(q)) = [y(zO/c + @p:)), p:), p:), ?@)+ B2JC)I>

(43.13)

whence

But from (37.17) we know that =3= p~cz + rn~c4, hence

(r120/dp[;)) = p~)c2/& (43.15)

and therefore

J = Y(I + vp~)/&) = 2/2., (43.16)

where the second equality follows from (43. 13). The latter expression for J
contains no reference to the orientation of the coordinate axes, and hence
applies in the original
(43.16) we have

hence from (43 .9) we

coordinate system as well

dp = (;/;.) dpo,

find

dx dp = dxo dpo.

Combining (43.12) with

(43.17)

(43.18)
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Using (43. 18) in (43.3) we see that the distribution function f is invariant
under Lorentz transformation, that is,

f(P) = fo(Pl)). (43.19)

THE COMOV-lNC,-FRAME N UMBER DENSITY, ENERGY DENSITY, .&ND PRESSURE

From the point of view of thermodynamics, the fluid energy density and
the pressure are best defined in the comoving frame of the fluid. First, we

express the comoving-frame particle number density as the integral of the
distribution function over all momenta:

~
NO= ~O(pO)dpO. (43.20)

Given NO, the density of proper mass in the comoving frame is PO= IVOrnO.
The total energy density in the comoving frame is obtained by taking the

sum over all momenta of the product of the number of particles at a given
momentum times the energy of those particles, that is,

POOC2 =

I
~ofo(Po)dpo. (43.21)

Here pOo has the same meaning as in $40. Combined with (40.4) and
(43.20), equation (43.21) provides an operational definition of the fluid’s

specific internal energy e.

The stress tensor in the comoving frame is obtained by calculating the

rate of momentum transfer across a unit area, as was done to derive
equation (30.15). We find

J
(43.22)–Tii = ~(jp~fo(po) dpo.

To recover the correct equations of hydrodynamics for an ideal fluid we

must now assume that the distribution function fo(po) is isotropic in the

comoving frame. The stress tensor is then diagonal, T ‘i = –p,,, 8”, where

the pressure is given by

J“”p,,, = u;p:f~(po) alp”. (43.23)

In (43.23) there is no sum on i, and the subscript urn” for “material” has
been used to avoid confusion with the magnitude p of the momentum
vector p.

Because ~. is isotropic, we can evaluate (43.23) along any axis. Thus we

can equally well write

J
pm,= (U. oI)(po “l)fo(po) dpo

where 1 is an arbitrarily oriented unit vector; this form
what follows.

(43.24)

will prove useful in
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THE LABO R.ATORY-FR.AME PARTICLE DENS17T> EN15RGY DENS17T, AND

MOMENTUM DENSITY

Let us now calculate the particle density, energy density, and momentulm
density of the fluid as measured in the laboratory frame. The particle
density is

J
N= f(p) dp. (43.25)

Using (43.10), (43.17), and (43, 19) we can rewrite (43.25) as

~
N = ‘y [1+ (v “po)/z-olfo(Po) ~Po. (43.26)

Because ~. is isotropic the integral containing (v . po) vanishes, and we have

N = -yNo, (43.27)

in agreement with (39.4).

The energy density (ED) in the laboratory frame is

J J
ED = ~~(p) dp = y2 (l/~ O)(~O+v- po)2~CI(pO)dpo, (43.28)

where we again used (43.10), (43.17), and (43.19). Expanding the square,

and again noting that the integral containing (v “ po) vanishes because f. is

isotropic, we have

J
ED= yz [~. + (V . pO)2/~o]fo(pO) dpo. (43.29)

From (37.3) and (37.13) we have

po = zouo/c2. (43.30)

Efence (43.29) can be rewritten as

~
~~ = y’ [~. + (U. - V)(po - v)/c2]fo(po) dpo, (43.31)

and if we choose 1 = (v/v), we see from (43.21) and (43.24) that

ED= T2[~ooC2+ (IJ2/C2)p.1]. (43.32)

LJsing the identity (v2/c2) = 1 – Y-2 we obtain finally

ED= ‘y’(pooc’+ p,.) – pm = Y’poo(,c’– pm, (43.33)

which is identical to fvf00 in the stress-energy tensor, as expected.
The momentum density (MD) in the laboratory frame is

[ ~
~ = pf(p) dp = (~/~o)Pfo(pO)dpO. (43.34)
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Using (43.10) and (43.1 1] we obtain

(
MD = y [1 -’r(v “pJ/Eo][pu t (y – I)”u-z(v “p“)v+ (yzc)/c2)v]fo(po) dpo.

(43.35)

Expanding the integrand, discarding those terms that integrate to zero for
isotropic fO, and using (43.30) we find

J
h’f~ = (YIC2) [’y;OV+ (y – l)u-2(U0 - V}(PO oV)V+ (UO - V)po]fo(po) dpo.

(43.36)

Agalll Usi[lg (43.21) a]ld (43.24) with I = (v/v), we obtain

J
MD = Y2POOV+ Y(7 – I )(p,,./C2)v+ (Y/C2) (W “v)pofo(ld ~po.

(43.37)

By resolving p. along J = (v/o) and a unit vector m orthogonal to 1, it is easy

to show that, for an isotropic .fO,

J J
(UO - V)pO.fO(pO)dpo ‘v (Uo “1)(Po “l)fo(po) ~po> (43.38)

which is just p,mv. Thus (43.37) reduces to

m = y2(poo * pm/c2)v = Y2POOOV> (43.39)

which is (l/c) times A/” in the stress-energy tensor, consistent with our

earlier interpretation of those components.

THE LABORATORY-FRAME PA RTICJ.E FLUX, EN13RGY FLUX, AND MOMENTUM

FLUX

The particle flux density oector (PF) in the laboratory frame is

J
PF = Vf(p) dp. (43.40)

Again using (43.17), (43.19), and (43.30) restated in the lab fralme (i.e.,

2V = Czp), we find

JPF = C2 (p/&j)fo(po) dm. (43.41)

Using (43.11) for p, and retaining only the terms that survive the integra-
tion we have

J
PF = yv fo(po) dpo = TNOV= Nv> (43.42)

which is identical to the particle flux density vector iVoVa introduced in

$39.
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The particle energy jlux vector (EF) in the laboratory frame is

J
EF = ZVf(p) dp. (43.43)

Proceeding as above, and using (43.34) and (43.39), this expression re-

dUCeS tO

J J
EF = (~2/~O)VfO(PO) dpo = C2 (~/~O)pfO(pO) dpO = T2~OOOC2V.

(43.44)

Thus the energy flux is c times the components MO’ in the stress-energy
tensor, as expected from the interpretation given earlier for those compo-
nents. It is also equal to C2 times the momentum density (43.39), consistent

with the relationship between Al”’ and kf”.

Finally, the particle momentum flux tensor in the laboratory frame is

J
~r’;= VW(P) ~P. (43.45)

Again proceeding as above we find

J ()
lIii = Jpj :

J
fo(Po) ~Po = c’ g fo(Po) ~Po

eO

J[

1 (Vl)(v “ Po) V,+&v,=Cz ~ ~;+
eo V2 C2 1

~ ~i+(Yu@” Po)vi+mvJ f(p)dpo

[ V2 1
00

C2

H

1 (y - 1.)2(V opo)z=Cz ~ y%:
~. P; P/l+ vivj+—

V4 c
~ v’s’

(43.46)
+(Y- 1)(V “ Po)

1
(p;v’ + pdvi) MPO) dpo

V2

‘H
~;p: +(7– 1)2(V “ Po)(v “u,) Viv; ~ 7220— V’vi

V4 C2

+(Y - 1)(V “ Uo)

‘1
(P;vi + PAV’) fo(po) dpo

V2

{
=p,n 8’i+[(y –l)2+2(Y– 1)1$

}
+ -#poovk;,

where we have used (43.11), (43.17), (43.21), (43.24), (43.30), (43.38), and
the isotropy of ~o. Using the definition of y to collapse the term in square

brackets we obtain finally

rtif=p,,, aij + y’(poo+ pm/c2)v’vi = pp. 8ii + y2pooovivi, (43.47)
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which is identical to the space-components I@i in the stress-energy tensor,

as expected.

We have thus been able to derive the entire stress-energy tensor frolm a

microscopic point of view.

“rH13 EQUATION OF ST,L\TE

Thus far, the on [y restriction we have placed on fO(pO) is that it be isotropic
in the comoving frame. But if the particles move with only nomelativistic

velocities, then it is reasonable to assume that ~0 is the Maxwellian

distribution. In the nonrelativistic limit 20= rnO(c2 + ~L@, hence from
(43.21) one easily finds

poocz = pOc2+~lVOkT (43.48)

where T is the material temperature measured in the comoving frame.

Hence the specific internal energy is e = ~(NOkT)/wtO,and the energy per
unit volume is 2 = ~NOkT. Similarly, from (43.22) one finds

(43.49)–Tii = pO(U~U&)=NOkTc3ii,

whence pt. = NOkT, and therefore

pm = ;~ (N.R.). (43.50)

All other thermodynamic properties in the comovi ng frame are the same as

those derived in Chapter 1 for a perfect gas.

In the extreme relativistic limit, we see from (37.17) that ZO-+ pOc, and
from (40.4) that pOOc2 ~ pOe = i?. Thus from (43.21)

1 J
(43.51)2 = c pofo(po) dpo = 4fic Pofo(PoM ~Po.

In this limit we can also write U. = cn where n = (po/po) is the unit vector
along po. Then, from (43.24), we have

J J
pm = c (n” l)2pofo(po) cipo = +(47rc) pofo(Po)P8 4?0 (43.52)

because (n “I)z = ~. Thus we obtain the important relation

pn, = & (E. R.) (43.53)

which may be contrasted with (43.50) for a nonrelativistic gas. To obtain

(43.53) we invoked only the isotropy of fo. To derive the other ther-

mody namic quantities for the gas we need an explicit expression for f.. If
the gas is nondegenerate we can use the relativistic generalization of the
Maxwellian distribution obtained by eliminating the velocity v in favor of
the momentum p. One then easily can show [cf. (Cl, Chap. 10)] that

i = 3NokT, pm= NokT, c. = 3R, CP= 4R, and r = $ (here r is the adiabatic

exponent). Following a different route we shall derive, in $69, the same
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value for 1’ and the same relation between p and 2 for equilibrium

radiation (which, of course, is a gas composed of ultrarelativistic particles:
photons). Relativistic effects can also be important when the gas is degen-

erate; see (Cl, Chap. 24) for cletai Is. An in-depth general discussion of
relativistic gases is given in (Dl) and (S2).

4.3 Relativistic Dynamics of Nonideal Fluids

Let LE now consider a relativistic viscous and heat-conducting ffuid viewed

as a continuum. We will essentially follow Eckart’s ground-breaking
analysis (El); for more detailed treatments and discussions of related

topics the reader should consult (L5, Chap. 5), (M3, Chap. 22), (Tl), (Wl),

and (W2, 5 3–57). Because it causes no additional complication to do so, we
assume a general metric tensor gtie (with spacelike signature); most of the

equations written below will then hold in general relativity as well as

special relativity.

44. Kinematics

THE ECKA RT DECOMPOSITIOhl WI EO REM

We define the projection tensor to be

P;= S;+ C-2 V”VB> (44.1)

or, in covariant components,

PaB= gm,P; =&e+ C-’v.vp, (44.2)

with a silmilar expression for Pm@. It is easy to prove by direct calculation
the following useful relations:

p;p; ~ p:, (44.3)

p~ ~ p,p13-f, (44.4)

and
P’@PmB= 3. (44.5)

More important, using (36.5), one easily finds that

V.Q = v@P; = o, (44.6)

which shows that P; produces a projection orthogonal to V’” in spacetime.

Recalling that at each point in spacetime Vm lies along the local axis of
proper time, we see that P; selects three directions along the local axes of
proper space, and thus is the local spatial projection operator in the

comoving frame. Indeed, one sees by direct evaluation that

0000

(P;), =

()

0100

0010”

0001

(44.7)
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Using P; we can decompose any vector A“ into a scalar a that gives its
projection onto the proper time axis, and a vector au which is the
projection of Am into proper space. Thus if we define

then we can write

It is easy to show by direct calculation that (44.8) to (44.10) are mutually
consistent.

Similarly, we can decompose any tensor W ‘iD into its proper components

by defining the scalar

w = C-4 Vavp w“~, (44.11)

the vector

W“=–C-’P;WW,, (44.1 2)

and the tensor

w“~ = P;Pgw”. (44.1.3)

We can then write

w“~ = wv”v~+w”vfi+w~v”+w”~, (44.1 4)

which is known as the Eckarl decomposition theorem. Again, it is easy to

verify by direct calculation that (44.11) to (44.14) are mutually consistent.

TME VEI.0CITY-G17A0 IENT TEhTSOR

Consider the fluid velocity-gradient tensor Va,P. Notice first that

V.;BV6 = (wJ&), (44.15)

the intrinsic derivative of Vti with respect to proper tilme; this quantity is
the fluid four-acceleration A.. We therefore write Va,@ in terms of an

acceleration component along the local time axis, and a set of spatial
components, by means of the decomposition

V,;B = Va;VP~ – C-2A. V0. (44.16)

To verify the correctness of this decomposition we note that

V8Va;@ = (V@Pj) V.;y – c-2( V@VG)A. = O+Aa, (44.17)

and

P~Va,, = (P~P;) Va,a– c-2(P~V7)Ae = P~V.;5 + O. (44.18)

We can decompose the right-hand side of (44.16) further by defining the
antisymmetric rotation tensor

Qa6 = +( V.;,P; – VB;,P:), (44.19)



162 FOUNDATIONS OF RADIATION HYDRODYNAMICS

and the symmetric shear tensor (or rate of strain tensor)

which are given these names because in the co]novi ng frame they reduce to

the covariant generalizations of the Newtonian expressions for these quan-
tities (cf. $21). Clearly E.B + CltiG= V~,yP& hence we can rewrite (44.16) as

It is actually more convenient to choose the shear tensor to be

is the expansion of the fluid. One sees that DaB is the covariant generaliza-

tion of the Newtonian traceless shear tensor [cf. (25.3) and (32.34)].

Thus we can write, finally,

which is the relativistic generalization of the Cauchy-Stokes theorem discus-

sed in $21. It shows that in spacetime a fluid is accelerated along its proper
time axis, and experiences shear, rotation, and expansion along its local

space axes. Explicit expressions for P;, A., 0, flaB, and DaB in terms of the

ordinary velocity v and lab-frame space and time derivatives are easily
derived. These expressions are too lengthy to reproduce here, but are given

by Greenberg in (Gl, 764–765); the reader should note that the signs in

some of Greenberg’s formulae conflict with those in our formulae because

Greenberg uses a metric with a timelike signature.
Finally, note in passing that from (44.6),

VmDaD= Va& = O, (44.25)

and

v“flaB = VJF = o. (44.26)

Furthermore, by virtue of (44.4) and (44.5) we have

Pm@D”@ = P“BDmB = +(vm;,P”’ – VB;,P”’) – 6

= Vm,, (g”’ +C-2V”V’)– e = v:, – (3-0, (44.27)

where we used (36.8) and (44.23). We will find all of these results useful in

5$46 and 47.

45. The Stress-Energy Tensor

Given the results of 544 it is fairly straightforward to deduce the form of
the stress-energy tensor for viscous and heat-conducting fluids by seeking
suitable covariant generalizations of the usual Newtonian expressions. Thus
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the viscous terms in the stress-energy tensor must be

– MV,,COU,= 2p D+<61P, (45.1)

where D is the shear tensor (44.22), P is the projection tensor (44.2), and
w and ~ are, respectively, the coefficients of shear and bulk viscosity. One

can see by inspection that, in the comoving frame, (45.1) reduces to the
covariant generalization of the Newtonian expression (25.3). (The minus

sign appears because of the sign convention for the Cauchy stress tensor;

cf. $22.)

Consider now the contribution from heat flow. Classically we describe
heat flow in the comoving frame by a vector q, whose components give the
rate of energy flow per unit area along each coordinate axis. We saw in

$$40 and 43 that the energy flux is c times the elements A@’ of the
stress-energy tensor. Therefore if we take Q to be the four-vector generali-
zation of q, then in the comoving frame we must have (@i)o = Qi/c; we
can obtain precisely such a contribution to M. from a term of the form
C-2 WQ@. But if we introduce such a term, then because M must be

symmetric, and from the Eckart decomposition theorem, we know that M
must also contain a term of the form c–2Qu V~. We thus conclude that

M&L=c-’(VQB+Qa VB). (45.2)

As before, the (i, O) elements of M~C,, can be interpreted as c times a

momentum density. That such terms should be present is reasonable

because heat is energy and, by Einstein’s mass-energy equivalence, has
inertia; hence in the comoving frame a heat fhLx q‘ gives rise to an

equivalent mass flux or a momentum density equal to c–2q1, which is, in

fact, identical to (i’vf&)O/c.
Adding the viscous and heat-flow contributions to the stress-energy

tensor (40. 10) for an ideal gas, we conclude that the complete material

stress-energy tensor for a viscous, heat-conducting fluid is

or

Notice that a one-to-one correspondence can be made between the terms
in (45.4) and those appearing in the Eckart decomposition theorem

(44.14). In particular, we can identify Qti with WC’ as given by (44.12);

then in view of (44.6) we see that

V.cr =0, (45.5)

a result we will find useful below.

Explicit expressions for ft’fm~ in terms of the ordinary velocity, and

lab-frame space and time derivatives, are given in (Gl, 769–770). To
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translate the symbols used in (Gl) to those used here, make the substitu-

tions v ~ 2K, ~ -+ 3<, and A - K (the themlal conductivity, see $46).

46. The Energy Equation

We are now in a position to derive the equations of hydrodynamics for a
relativistic nonideal fluid. As for an ideal fluid, the general equations of

motion follow from

For simplicity we assume that both p and C are constants. Differentiating
each term in (45.4) we have

(Q”v@);B = ~Qm+ (~Q”/DT), (46.5)

and

Then, collecting terms and using the relation

P:~ = (gCK@+ c-2 VrXV@):@= C-2(A” + OVti), (46.7)

we have

M;8 = {(~POO/~T) + 6[P0.+C-’(P– @)]}V”

+ [poO+ C-z(p – @)]A” + P“@ (p – @),B – 2@:: (46.8)

+ c-2[(DQa/D~) +@Qm + V&Q~@+ Q~(DmG+ QaB)] = F“.

We obtain the energy equation by taking the “time” component of

(46.8), that is, by projecting it onto Va. Thus forming V&f& and using
(36.5), (36.8), (44.6), (44.25), (44.26), and (45.5) we find

c2(Dp00/D~) + (POOC2+ p)~ = –2w VD>6+ L02 – [Q:@ – C–2V,.(DQ”/DT)],
(46.9)

where, as in $42, we have assumed that the OnlY forces acting are such that
VaF”=O.

We can rewrite the left-hand side of (46.9) in a more useful form by
noticing that

Va (p,~),a+po,() V:a = Va (Pooo),a +-PoooY- C–2v’mP,c.
(46.10)

= (Pooova):a – c-2vaP,a.
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Similarly, on the right-hand side, using (45.5) we have

and using (44.25) we have

Vm~: = (VCK@):B – D“BVa.@ = –D”c Vm.@. (46.12)

Then substituting for Vti,~ from (44.24), and using (44.25) and (44.27) we

see that

Using (46.10) to (46.13) in (46.9) we find

Then by the same steps that lead from (42.8) to (42.10) we can reduce
(46. 14) to

(46.15)

where s is the specific entropy.

Equation (46. 15) is the relativistic generalization of the entropy genera-
tion equation (27. 11) when we use (27.28) for the dissipation function cD.

As in the nonrelativistic limit, the first two terms on the right-hand side

correspond to irreversible heat generation by viscous dissipation. The third
term gives the rate of heat flow into the material from its surroundings.

The fourth term is purely relativistic in origin and predicts an additional
deposition of heat when the material accelerates into the heat flow (a and q
antiparallel), which is reasonable because if we suppose that the heat flux

arises from radiation, then we see that more heat can be delivered to

material accelerating into the radiation flow because photons will be

blueshifted to higher energies as they enter the fluid element and red-

shifted to lower energies as they leave it.
Thus far we have left the form of Q“ unspecified, although we expect it

to reduce to Fourier’s law q = –K VT in the nonrelativistic limit. We can

deduce an expression for Q“ as follows. From (27.19), we know that

classically we must have

J

Ds
p— dV~

J
~d~=

. Dt ST L[ :(ps)+v”(psv+%)ldv=o
(46.16)

where we used (19.3) and the divergence theorem. Because V is arbitrary,

(pS),, +V . [psv+(q/T)]20. (46.17)

From (46. 17) we see that the vector s = psv + (q/T) can be interpreted
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classically as the entropy flux density in a heat-conducting fluid [in an ideal

fluid the term q/T is, of course, absent; cf. (27.14)]. The covanant
generalization of s is

s“ = posva +( Q”/T), (46.18)

which we take to be the entropy fhx density four-vector. As the covariant
generalization of (46.17) we therefore take

S;=o, (46.1 9)

which is, in essence, a relativistic statement of the second law of ther-

modynamics.

Substituting (46.18) into (46.19), and using (39.10), we have

PO(~S/m) + (Qa/T),m = O. (46.20)

Combining (46.20) and (46. 15) we thus find

PO(~S/~~) + (Q7’T);. = (@~”B~.B + L02)/’T – (Q”/’T2)(’T. + C-2TAa) ~ 0.
(46.21)

The first term on the right-hand side is obviously positive, so we must

merely choose Q“ in such a way as to guarantee that the second term will
be positive. Eckart (El) noted that the simplest way to do this is to take

Q“ = –KFJ”B(TP + C-zTAB)> (46.22)

which (1) is consistent with Fourier’s law in the classical limit, (2) is

consistent with the requirements of the Eckart decomposition theorem [cf.
(44.12) and (45.5)], and (3) makes the second term on the right-hand side a

positive perfect square, guaranteeing positivity, as desired. The term TAD
is relativistic in origin and implies a flow of heat in accelerated matter even

if the material is isothermal; the flow is in the direction opposite to the

acceleration, and can be ascribed to the inertia of the heat energy [see (El)
for further discussion and interpretation]. Finally, using (46.22) in (46.21),

and evaluating the result in the comoving frame we find

~o(R)=:v”FT+%)+$(vT+%Y+% ‘4623)
which is a direct analogue of the classical result (27.19) when the terms

containing a. are suppressed.
Explicit expressions for Q“ and for the energy equation (46.15) in terms

of the ordinary velocity, and lab-frame space and time derivatives, are
given in (Gl, 765–766); again conflicts of signs arise in the formulae

because of Greenberg’s choice of a timelike signature.

47. The Equations of Motion

To obtain the equations of motion for a relativistic nonideal fluid we take
the “space” components of (46.8) by calculating PmyM~#. Noting that

PmVA’ = Am (47.1)
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and

PmTF” = Fa> (47.2)

we easily find

[POO+ ~-2(P – @)](~Vm/~) = F. – f’~(P – @),@ + 2@@~#
(47.3)

– c-2[Pav(D@/D~) +@Qa +PwyQ@ (D’6 + 076)].

To obtain the nonrelativistic 1imit we let c e CO.Then in Cartesian coordi-

nates ~. ~ vi, (fl/11~) a (11/11), Pi, ~ 13ii, P; ~ ~~, and we recover the

usual Navier-Stokes equation (26.1), as expected.

Explicit expressions for the momentum equations in terms of the ordi-
nary velocity, and lab-frame space and time derivatives, are given in (Gl,
767–768). As before, it is necessary to translate some of the notation.
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